
1

A Flexible, Line-Based JPEG2000 Decoder for
Digital Cinema

Abstract— The image compression standard JPEG2000 pro-
poses a large set of features, useful for today’s multimedia
applications. Unfortunately, its complexity is greater than older
standards. Real-time applications such as Digital Cinema requires
a specific hardware implementation. In this paper, a decoding
scheme is proposed with two main characteristics. First, the
complete scheme takes place in an FPGA without accessing
any external memory, allowing integration in a secured system.
Secondly, a customizable level of parallelization allows to satisfy
a broad range of constraints, depending on the signal resolution.

Index Terms— JPEG2000, line-based, arithmetic coding, bit-
plane coding, wavelet transform, Digital Cinema.

I. I NTRODUCTION

DEVELOPMENT and diversification of computer net-
works as well as emergence of new imaging applica-

tions have highlighted various shortcomings in actual image
compression standards, such as JPEG. The lack of resolution
or quality scalability is clearly one of the most significant
drawbacks. The new image compression standard JPEG2000
[1] enables such scalability : according to the available
bandwidth, computing power and memory resources, different
resolution and quality levels can be extracted from a single
bit-stream. In addition to this, the JPEG2000 baseline (part I
of the standard) also proposes other important features: good
compression efficiency, even at very low bit rates, losslessand
lossy compression using the same coder, random access to
the compressed bit-stream, error resilience, region-of-interest
coding. A comprehensive comparison of the norm with other
standards, performed in [2], shows that from a functionality
point of view JPEG2000 is a true improvement.

The techniques enabling all these features are a wavelet
transform (DWT) followed by an arithmetic coding of each
subband. The drawback of these techniques is that they are
computationally intensive, much more for example than a
cosine transform (DCT) followed by an Huffman coding,
which are those used in JPEG [2]. This complexity can be
a problem for real-time applications.

Digital Cinema is one of these real-time applications. As
explained in [3], edition, storage or distribution of video
data can largely take advantage of the JPEG2000 feature set.
Moreover, a video format named Motion JP2000 has been
designed, which encapsulates JPEG2000 frames and enables
synchronization with audio data [4]. Nevertheless, a high
output rate is required at the decoding process and in order to
meet this real-time constraint, a dedicated implementation of
the most complex parts of the algorithm is needed.

In this paper, a complete JPEG2000 decoder architecture
intended for video decoding is proposed. It has been im-
plemented in VHDL and synthesized in an FPGA (Xilinx

XC2V6000 [5]). It takes about 90% of the chip and the
estimated frequency of operation is 90 Mhz. The proposed
architecture decodes images line by line without accessing
any external memory. It is highly parallelized and depending
on available hardware resources, it can easily be adapted to
satisfy various formats, from Digital Cinema to Video-on-
Demand, and specific constraints like secure decoding, lossless
capabilities, and higher precision (over 8 bits per pixel).

The rest of the paper is organized as follows. Section II
briefly describes the JPEG2000 algorithm. In Section III, we
present our decoder architecture as well as our implementation
choices. The main blocks of the architecture are described
more in details in Sections IV to VI. The performance of the
system is discussed in Section VII and the paper is concluded
in Section VIII.

II. JPEG2000OVERVIEW

In this Section, concepts and vocabulary useful for the
understanding of the rest of the paper are presented. For
more details, please refer to [1] or to [6]. Although adecoder
architecture was achieved,encoding steps are explained here
because their succession is easier to understand. Decoding
process is achieved by performing these steps in the reverse
order. Figure 1 presents the coding blocks which are explained
below.

Tile

Image

HL

LH HH

Wavelet

Transform

cblk cblk

cblk cblk

cblk cblk

Entropy

coding

Segment

Segment

Segment

. . .

Rate

allocation

+ Bit-stream

organization

header packet packet header

JPEG2000 code-stream

Fig. 1. Coding steps of the JPEG2000 algorithm.

First of all, the image is split into rectangular blocks
called tiles. They will be compressed independently from each
other. An intra-components decorrelation is then performed on
the tile: on each component adiscrete wavelet transform is
carried out . Successive dyadic decompositions are applied.
Each of these uses a bi-orthogonal filter bank and splits high
and low frequencies in the horizontal and vertical directions
into four subbands. The subband corresponding to the low
frequencies in the two directions (containing most of the
image information) is used as a starting point for the next
decomposition, as shown in Fig. 1. Two filter banks may be
used : either theLe Gall (5,3) filter bank prescribed for lossless

2

encoding or either theDaubechies (9,7) filter bank for lossy
encoding.

Every subband is then split into rectangular entities called
code-blocks. Each code-block will be compressed indepen-
dently from the others using acontext-based adaptative en-
tropy coder. It reduces the amount of data without losing
information by removing redundancy present in the binary se-
quence. “Entropy” means it achieves this redundancy reduction
using the probability estimates of the symbols. Adaptivityis
provided by dynamically updating these probability estimates
during the coding process. And “context-based” means the
probability estimate of a symbol depends on its neighborhood
(its “context”). Practically, entropy coding consists of

• Context Modeling : the code-block data is arranged in
order to first encode the bits which contribute to the
largest distortion reduction for the smallest increase in
file size. In JPEG2000, the Embedded Block Coding with
Optimized Truncation (EBCOT) algorithm [7] has been
adopted to implement this operation. The coefficients in
the code-block are bit-plane encoded, starting with the
most significant bit-plane. Instead of encoding the entire
bit-plane in one coding pass, each bit-plane is encoded
in three passes with the provision of truncating the bit-
stream at the end of each coding pass. During a pass,
the modeler successively sends each bit that needs to
be encoded in this pass to the Arithmetic Coding Unit
described below, together with its context.

• Arithmetic Coding : the modeling step outputs are entropy
coded using a MQ-coder, which is a derivative of the
Q-coder. According to the provided context, the coder
chooses a probability for the bit to encode, among pre-
determined probability values supplied by the JPEG2000
Standard and stored in a look-up table. Using this proba-
bility, it encodes the bit and progressively generates code-
words, called segments.

During therate allocation andbit-stream organization steps,
segments from each code-block are scanned in order to find
optimal truncation points to achieve various targeted bit-
rates. Quality layers are then created using the incremental
contributions from each code-block. Compressed data corre-
sponding to the same component, resolution, spatial regionand
quality layer is then inserted in a packet. Packets, along with
additional headers, form the final JPEG2000 code-stream.

III. PROPOSED ARCHITECTURE

In this section, we first present the constraints we used for
our JPEG2000 decoder architecture. Implementation choices
made in order to meet these constraints are then explained.
Finally, the complete architecture is presented.

A. Constraints

As our decoder is designed for real-time video processing,
three main constraints have been identified :

• High output bit-rate : all implementation choices have
been made in order to increase this bit-rate. With the
Xilinx XC2V6000 used, we wanted our architecture to

satisfy at least the 1080/24p HDTV format. This means
an output rate of about 1200 megabits per second (Mbps)
for 8-bit 4:4:4 images.

• Security : no data flow may transit outside of the FPGA if
it is not crypted or watermarked. This constraint enables a
completely secured decoding scheme, as the decompres-
sion block might be inserted between a decryption block
and a watermark block, all these three blocks being in
the same FPGA (Fig. 2).

• Flexibility : computationally intensive parts of the decod-
ing process must be independent blocks which can easily
be duplicated and parallelized. This allows the proposed
architecture to satisfy a broad range of output bit-rate
constraints and therefore to be easily adapted to upcoming
Digital Cinema standards.

Decryption Decompression Watermarking

FPGA
Encrypted

and compressed

bit-stream

Watermarked

bit-stream

Fig. 2. A secured decoding scheme.

B. Implementation choices

To meet these constraints, the following implementation
choices have been made.

No external memory has been used which meets the security
constraint and also increases the output bit-rate, as the band-
width outside the FPGA is significantly slower than inside. As
internal memory resources are limited, large image portions
cannot be stored and the decoding process must be achieved
in a line-based mode.

In order to increase the output bit-rate, threeparallelization
levels have been used. The first one is a duplication of the
entire architecture which allows various tiles to be decoded
simultaneously. The second parallelization level tries tocom-
pensate the compute load difference between the entropy de-
coding unit (EDU) and the inverse wavelet transform (IDWT).
The EDU is indeed much more complex than the IDWT and
must therefore be parallelized. This is possible as each code-
block is decoded independently from the others. Finally, a third
level of parallelization, known in the JPEG2000 standard asthe
parallel mode, is obtained inside each EDU. By default, each
bit-plane is decoded in three successive passes but specifying
some options ([8], p.508) during the encoding process makes
it possible to decode the three passes simultaneously. This
implies that each EDU contains one Context Modeling Unit
(CMU) and three Arithmetic Decoding Units (ADU).

Another option specified during the encoding process that
increases the output bit rate of the decoder is thebypass mode
([8],p.504). The more correlated the probability estimates of
the bits to encode are, the more efficient the ADU is. This is
especially the case in the most significant bit-planes whilethe
last bit-planes are most of the time totally uncorrelated. With
the bypass mode enabled, these last bit-planes are therefore
raw-coded1.

1This means they are inserted “as is” in the bit-stream.

3

Some choices aboutimage partitioning have also been
made. A512x512 tile partition avoids an external memory use
and enables one of the parallelization level mentioned above.
Inside each tile, even if the code-block maximum size specified
in the norm is 4096 pixels, code-blocks in our implementation
do not exceed 2048 pixels. As we shall see, this implies no
significant efficiency loss but allows a50% memory resources
saving. Furthermore, the code-block dimensions have been

HL2

LH2

LL3 HL3

LH3 HH3

HH2

cblk 1

cblk 2

. . .

cblk n

Fig. 3. Customized code-block dimensions.

chosen so that each of them systematically covers the width
of the subband to which it belongs (Fig. 3). As the IDWT
processes the subband data line by line, such code-block di-
mensions enables a line-based approach of the overall process,
reducing the size of the image portions to store between EDU
and IDWT.

These last implementation choices (parallel mode, bypass
mode and image partitioning) imply an efficiency loss during
the encoding process. Table I shows the correspondingpsnr
losses for various compression ratio. In comparison to the
improvements provided by these choices, quality losses are
quite reduced, especially for small ratios which are the ones
used in the targeted applications.

TABLE I

AVERAGE PSNRFOR A SET OF IMAGES1920X1080, 8BPP

Compression PSNR [dB]
ratio Default options Options used
1:50 37,36 35,83 (-1,53)
1:25 40,10 38,74 (-1,36)
1:10 43,25 42,40 (-0,85)
1:5 45,85 45,31 (-0,54)

Another choice has to be made in order to enable a line-
based processing of the image. To reconstruct one line of the
original image, the IDWT needs the corresponding line at each
resolution. In order to minimize the image portions size to
store, data inside the bit-stream is organized so that the whole
compressed data corresponding to a specific spatial region of
the image is contiguous in the bit-stream. Various progression
orders are allowed during the JPEG2000 encoding process and
one of them enables such kind of feature.

A last implementation choice aims at achieving some
lightweight operations in software. These operations are in-
deed essentially data handling and are easily implemented
using pointers in C. To keep the decoding process secure,
headers and markers (needed by these operations) are not
crypted and only the packet bodies are.

As it can be seen, some options, known by any universal
JPEG2000 encoder, must be specified during the encoding

process. Our architecture is unable to decode a JPEG2000
code-stream that has not been encoded using these options.
As this architecture is dedicated to decode video data at the
highest output bit-rate, we did not consider it efficient to
realize a universal decoder.

C. Architecture

Figure 4 presents the hardware part of our architecture.
Each EDU contains three ADU’s which reflects the parallel
mode. The bypass mode is also illustrated by the bypass line
under each ADU. The Dispatch IN and OUT blocks are used
to dissociate the entropy decoding step from the rest of the
architecture and enable the flexibility mentioned above. When

FIFO

FIFO

D
 I S

 P
 A

 T
 C

 H
 I N

PCI

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

.

.

.

C
M

U

FIFO

D
 I S

 P
 A

 T
 C

 H
 O

 U
 T

FIFO

FIFO

FIFO

(4x)

FIFO

(3x)

FIFO

(3x)

FIFO

(3x)

FIFO

(3x)

IDWT 4

IDWT 3

IDWT 2

IDWT 1

IDWT 0

DC Shift

to
w

a
rd

s
 th

e
 d

is
p
la

y

ADU

ADU

ADU

C
M

U

ADU

ADU

ADU

C
M

U

ADU

ADU

ADU

EDU

IDWT

.

.

.

.

.

.

EDU

EDU

Fig. 4. Proposed architecture.

Dispatch IN receives a new JPEG2000 code-stream from the
PCI, it chooses one of the free EDU’s and connects the data
stream to it. Dispatch OUT retrieves decompressed data from
each EDU and connects it to the correct subband FIFO. In
this way, a maximum of EDU’s is always used simultaneously.
ADU, CMU and IDWT blocks are explained below more in
details.

IV. CONTEXT MODELING UNIT

A. EBCOT algorithm

In the EBCOT algorithm, each code-block is encoded along
its bit-planes, beginning with the most significant one. Each
bit-plane is encoded in three passes. Each bit of the bit-plane
is encoded only once, by one of the three passes. When the
EBCOT decides to encode a bit, it sends this bit along with its
context to the MQ-coder. The MQ-coder will then generate the
compressed bit-stream. The decoding process is very similar:
the main difference is that the EBCOT sends only the context
to the MQ-decoder and waits for the decoded bit. This implies
a little efficiency loss given that the EBCOT is inactive while
waiting for the MQ-decoder’s answer.

To achieve a specific bit-rate while guaranteeing the min-
imum distortion for this bit-rate, the EBCOT defines a set
of optimal truncation points during the code-block coding
process. If each bit-plane was encoded in one pass, the only
optimal truncation points would be the bit-planes borders.
Distributing the bits of a bit-plane between three subgroups

4

according to the distortion reduction they bring defines two
optimal truncation points more inside each bit-plane and
allows a more precise bit-stream truncation.

Concretely, each coefficient in a code-block has three state
variables and each bit in a bit-plane has two. These state
variables indicate for example if the coefficient has already
become significant, or if the bit in the bit-plane has already
been processed by one of the three passes. They are held up
to date by the EBCOT and are used to decide in which pass
the bit has to be encoded. They influence also the neighbors
context.

B. CMU architecture

A simplified view of the CMU architecture adopted is
presented in Fig. 5 and is based on the one developed by Andra
et al. in [12]. Various optimizations have been made, most of
them due to the use of the parallel mode. The architecture
consists of :

• Three similar entities, each one performing one of the
three decoding passes. A unique counter for the three
passes manages the code-block’s characteristics, which
enables highly simplified control parts for the three
blocks. It synchronizes the passes and controls the code-
block’s borders. This allows the three entities to work the
same way either they decode bits inside a code-block or
either on its border.

• An internal RAM which stores the state variables. The
passes communicate these state variables through specific
registers, offering a significant memory reduction (44%
in comparison to an architecture without this registers
system) and a higher output rate.

• An external RAM where the code-block is progressively
decoded. As the EBCOT algorithm complexity makes
the CMU the slowest component of the decoder, the
memories designed to receive the decoded code-blocks
are able to take care of two code-blocks at a time. In this
way, the EDU can begin to decode a new code-block
while the previous one is still being processed by the
IDWT.

ADU

ADU

ADU

CMU

pass 1

pass 2

pass 3

Internal

RAM

Code-block 1

Code-block 2

IDWT

bit-stream

bit-stream

bit-stream

image

External RAM

Fig. 5. Simplified view of the CMU architecture.

For the whole image, the CMU takes in average 2.1 clock
cycles to produce one bit at its output2. The CMU decodes
actually one bit in 2 to 4 clock cycles, depending on the
position of the code-block in the image. In low frequencies,the
code-blocks are much more complex than in high frequencies,
but their size is much smaller (for an image of 5 levels of

2This result does not take into account the ADU decoding time.

resolution, 0.04% of the coefficients belong to the lowest
resolution, and 75% to the highest).

V. A RITHMETIC DECODING UNIT

A. MQ algorithm

The basic idea of a binary arithmetic coder is to find a
rational number between 0 and 1 which represents the binary
sequence to encode. This is done using successive subdivisions
of the [0; 1] interval based on the symbols probability. Fig. 6
shows the conventions used for the MQ-coder.C is the starting

MPS
(1 - Q)

LPS
(Q)

C
i

A
i

MPS

(1 - Q)

LPS
(Q)

C
i+1

= A
i+1

Fig. 6. Successive interval subdivisions in the MQ-coder (MPS-encoding
case).

point of the current interval and represents also the current
rational number used to encode the binary sequence.A is the
size of the current interval.Q is the probability of the Least
Probable Symbol (LPS) and is used to subdivide the current
interval. According to the symbol we want to encode (MPS

or LPS), we use respectively:

Ai+1 = Ai ∗ (1 − Q) and Ci+1 = Ci + Ai ∗ Q

Ai+1 = Ai ∗ Q and Ci+1 = Ci

During the coding process, renormalization operations are
performed in order to keepA close to unity. This leads to
the following simplified equations, respectively for an MPS
and an LPS:

Ai+1 = Ai − Qe and Ci+1 = Ci + Qe

Ai+1 = Qe and Ci+1 = Ci

At each step, theQ-value is retrieved from two serial look-up
tables, using the context provided by the CMU.

In a reverse way, the decoding process consists in deciding
to which interval (MPS or LPS) belongs the rational number
provided and in progressively going up until the[0; 1] interval.

B. ADU architecture

The ADU architecture is presented in figure 7. An analysis
of the MQ-algorithm shows that only four steps are needed
to decode one symbol. The first one is theLOAD step. It
uses two small RAM’s and a ROM, all realized with look-up
tables (LUT’s). Given a context, it retrieves the corresponding
probability and the MPS-value. During theCOMPUTE step,
three adders/subtracters perform all the operations needed to
decide if aMPS or a LPS must be decoded, which is done
during theDECIDE step. For some symbols only, a fourth

5

SUB

(3x)

NbShift

RamMQ
DECIDE

Shift

C

A

IN : CX

IN : B
BufferC

Raw

OUT : D

switch

Qe

nmps

nlps

mps

A

C

C-Qe

A-2*Qe

A-Qe

NbShift
BufferC

A

C

ShiftA

ShiftC

A

C

LOAD COMPUTE DECIDE

RENORME

Fig. 7. ADU architecture.

step is performed during which a renormalization (several left-
shift operations) of the A-interval takes place. This causes the
bit-stream to be progressively decoded.

Some characteristics of this architecture are worth being
noticed.

• The main control state machine consists of only 5 states.
Furthermore, the CMU is waiting for the ADU answer
during only three of them. Therefore a symbol may
be decoded in 3 clock cycles. The bypass mode still
improves this result (Raw-block in Fig. 7). This explains
why three adders/subtracters were needed in place of one:
all the arithmetic operations must be done in one clock
cycle.

• The compressed data loading (BufferC-bloc in Fig. 7)
is performed in a independent process and during non-
critics moments of the whole decoding process, i.e. when
the CMU is not waiting for an answer.

• To speed up the RAM initialization which takes place
each time a new codeword is sent to the ADU, two
RAM’s are used alternatively.

• Finally, to allow the renormalization to be executed in one
clock cycle, a speculative computation of the number of
left-shifts to execute is performed (NbShift-block).

VI. I NVERSEDWT

A. DWT basics

In JPEG2000, the DWT is implemented using a lifting-
based scheme [10]. Compared to a classic implementation, it
reduces the computational and memory cost, allowing in-place
computation. The basic idea of this lifting-based scheme isfirst
to perform alazy wavelet transform which consists in splitting
odd and even coefficients of the 1D-signal in two sequences.
Then, successiveprediction and update steps are applied on
these sequences until wavelet coefficients are obtained. The
2D-transform is simply performed by successively applying
the 1D-transform in each direction.

In the proposed architecture, the (5,3) transformation is
implemented. It is an integer-to-integer wavelet transform and
enables therefore lossless coding. Only one prediction step
and one update step are needed to perform the whole 1D-
transformation. Letx(n) be the spatial coefficients sequence

andy(n) be the wavelet coefficients sequence, equations used
to realize the transformation are :

y(2n + 1) = x(2n + 1) −

⌊

x(2n) + x(2n + 2)

2

⌋

y(2n) = x(2n) +

⌊

y(2n − 1) + y(2n + 1) + 2

4

⌋

The inverse transformation described below is simply obtained
using the reverse system :

x(2n) = y(2n) −

⌊

y(2n − 1) + y(2n + 1) + 2

4

⌋

x(2n + 1) = y(2n + 1) +

⌊

x(2n) + x(2n + 2)

2

⌋

B. IDWT architecture

To reconstruct one resolution level, an horizontal trans-
formation is applied first, followed by a vertical one. The
horizontal transformation architecture, further detailed in [9],
is shown in Fig. 8.

-

+ >> 2

>> 1+

+2

IN : even

IN : odd

OUT : even_out

OUT : odd_out

1

0

1

0

sel1

sel2

Fig. 8. Horizontal inverse DWT.

As it can be seen, only four adders/subtracters, two shifters,
two multiplexers and some registers are needed to implement
the equations above. In particular, no multiplier is used since
the only divisions performed are implemented with shifters.
This architecture is entirely pipeline : every new data couple
“pushes” the already present ones a little more through the
pipeline, toward the two outputs. The vertical transformation
is very similar to the horizontal one. The major difference is
that to reconstruct one coefficient, neighbors above and below
are needed (in place of left and right neighbors). This implies
to buffer two entire lines of the level being reconstructed.In
Fig. 8, these buffers replace the two serial registers preceding
each multiplexer.

The whole IDWT architecture has already been presented
in Fig. 4. In comparison with Chrysafis who presented in [11]
such kind of architecture, various optimizations have been
made. First, as mentioned above, the lifting scheme has been
adopted for each level. Second, interconnection of the blocks
has been carefully studied and simplified. Each IDWTi-block
(i = 0..4) reconstructs one resolution level and behaves at its
output like a FIFO. Therefore, each block “sees” four FIFO’s
as its inputs. Finally, the pipeline characteristic, already present
inside each level has been extended to the whole architecture.

6

Thanks to the progression order chosen, the sixteen FIFO’s
(one per subband) are filled as uniformly as possible. As
soon as its input FIFO’s contains data (including the one
simulated by the preceding level), an IDWTi-block begins to
reconstruct its level. When the pipeline is full, coefficients of
the reconstructed image are provided line by line at each clock
cycle.

The pipeline latency for a 512x512 tile has been computed
and is about210, which is 256 times smaller than the218

clock cycles needed to decode the entire image. Furthermore,
this small latency enables a line-based image reconstruction,
as only 1

256
of the entire image needs to be buffered inside

the IDWT architecture.

VII. PERFORMANCES

The architecture presented has been implemented in VHDL
and synthesized and routed in an FPGA (Xilinx XC2V6000)
using 10 EDU in parallel. Table II presents the resources used
with this configuration. As it can be seen, only61.8% of the
RAM resources are used.

TABLE II

SYNTHESIS RESULTS OF THE DECODING SCHEME IN AX ILINX XC2V6000

Slices 30,323 over 33,792 (89.7%)
Look-Up Tables 51,416 over 67,584 (76.1%)

RAM blocks (16kbits) 89 over 144 (61.8%)
CLK1 (EDU’s & Dispatch) 89.9 MHz

CLK2 (IDWT) 75,9 MHz

Table III presents the bit-rates achieved by our architecture
with the configuration described above. 24bpp-images were
encoded using options explained in section III.C. As we can

TABLE III

BIT-RATES ACHIEVED BY THE PROPOSED ARCHITECTURE

Compression 10-EDU IDWT Complete Scheme
ratio [Mbps] [Mbps] [#imgs(1920x1080)/sec]
1:10 728.0 2 440 14.63
1:20 1 290 2 440 25.92
1:32 2 137 2 440 42.94

see, this configuration yet enables real-time 8-bit 4:4:4 video
decoding for the 1080/24p HDTV format and a compression
ratio of 20. For a compression ratio of 11, the same format is
supported with 8-bit 4:2:2 images.

Several other JPEG2000 hardware implementations have
been developed. The main differences between two recent ones
and the proposed architecture are listed in Table IV.

VIII. C ONCLUSION

In this paper, we have proposed a hardware JPEG2000
decoder for real-time applications such as Digital Cinema.It
has been implemented in VHDL, and synthesized and routed
in an FPGA.

Various previous contributions have been joined together
and optimized to provide a complete, flexible, secure, high
performance decoding scheme.

TABLE IV

DIFFERENCES BETWEEN TWO RECENT IMPLEMENTATIONS AND THE

PROPOSED ARCHITECTURE

Barco Arizona Proposed
Silex[13] Univ.[14] architecture

Technology FPGA ASIC 0.18µm FPGA
XC2V3000 XC2V6000

Tile size 128x128 128x128 512x512
Cblk size (max.) 32x32 32x32 64x32
Wavelet filters (5,3)-lossless (5,3)-lossless (5,3) lossy and

used (9,7)-lossy (9,7)-lossy lossless
Entropy coders 8 3 10

The system proposed is secure because no external memory
is used and the data flow is protected during the whole
decoding process.

Thanks to three different levels of parallelization and a line-
based data processing, high output rates are achieved. Witha
compression ratio of 20, the configuration synthesized in the
FPGA supports the 1080/24p HDTV format for 8-bit 4:4:4
images.

Finally, the system proposed is highly flexible. In order
to satisfy a broad range of constraints, including upcoming
standards, two of the three parallelization levels are veryeasily
customizable. They allow the proposed architecture to fit in
any FPGA without further development.

REFERENCES

[1] ISO/IEC 15444-1: Information Technology-JPEG 2000 image coding
system-Part 1: Core coding system, 2000.

[2] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG2000 performance
evaluation and assessment”,Signal Processing: Image Communication,
vol. 17, no. 1, pp. 113-130, January 2002.

[3] S. Foessel, “Motion JPEG2000 and Digital Cinema”, ISO/IEC JTC 1/SC
29/WG1 N2999, July 2003.

[4] ISO/IEC 15444-3: Information Technology-JPEG 2000 image coding
system-Part 3: Motion JPEG 2000, 2002.

[5] VirtexTM -II platform FPGAs: Complete Data Sheet. Xilinx. [Online].
Available: http://www.xilinx.com.

[6] M. Rabbani and R. Joshi, “An overview of the JPEG2000 still image
compression standard”,Signal Processing: Image Communication, vol.
17, no. 1, pp. 3-48, January 2002.

[7] D. Taubman, “High performance scalable image compression with
EBCOT”, IEEE Trans. on Image Processing, vol. 9, no. 7, pp. 1158-1170,
July 2000.

[8] D. Taubman and M. W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice, Kluwer Academic, Boston, MA,
USA, 2002.

[9] G. Dillen and B. Georis, “JPEG 2000 : étude et conceptiondu décodeur
arithmétique et de la transformée en ondelettes”. Microelectronics
Laboratory (DICE), UCL, Belgium, June 2001.

[10] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps”, J. Fourier Anal. Applic., vol. 4, pp. 247-269, 1998.

[11] C. Chrysafys and A. Ortega, “Line based, reduced memory, wavelet
image compression”,IEEE Trans. on Image Processing, vol. 9, no. 3,
pp. 378-389, March 2000.

[12] K. Andra, T. Acharya, and C. Chakrabarti, “Efficient VLSI imple-
mentation of bit plane coder of JPEG2000”, inProc. SPIE Int. Conf.
Applications of Digital Image Processing XXIV, vol. 4472, pp. 246-257,
December 2001.

[13] JPEG2000 Decoder: BA111JPEG2000D Factsheet. Barco-Silex, Octo-
ber 2003. [Online]. Available: http://www.barco.com.

[14] K. Andra, T. Acharya, and C. Chakrabarti, “A High-Performance
JPEG2000 Architecture”,IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 3, pp. 209-218, March 2003.

