Near-Optimal Low Complexity MLSE Equalization

Abstract—An iterative Maximum Likelihood Sequence Esti- decision feedback equalization (DDFE). If large modulation
mation (MLSE) equalizer (detector) with hard outputs, that has  alphabets with\/ elements are used, set partitioning is able to
a computational complexity quadratic in the data block and the reduce complexity significantly by partitioning the modulation

channel length, is proposed. Its performance is compared to the . S
Viterbi MLSE algorithm that has a computational complexity constellation. However, set partitioning is not able to reduce

that is linear in the block length and exponential in the channel the computational complexity due to the channel memory
memory length. It is shown via computer simulation that the length L.
proposed iterative MLSE detector is able to detect Binary Phase-

. , : ; T In [8] an approach is proposed where the Viterbi and
shift Keying (BPSK) signals in systems with significantly larger ) . .
channel length than what is possible with the Viterbi algorithm, ~SPhere-Constrained methods are combined to perform optimal

for frequency selective Rayleigh fading channels. ML detection, and it is reported that the method has worst case
complexity determined by the VA, but is often lower.

Another way of mitigating the problem of high detection
For frequency selective channels, MLSE equalizer (desomplexity for communication systems with large channel
tector) based on the Viterbi Algorithm (VA) [1], [2] and memoryL is to use Orthogonal Frequency Division Multiplex-
the Maximum A Posteriori Probability(MAP) [3] equalizer ing (OFDM) modulation [9]. OFDM exploits the orthogonality
(detector) are frequently used to mitigate the inter-symbgiroperties of the Fast Fourier Transform matrix, and is able to
interference (ISl) caused by the frequency selective channpkrform optimal detection with trivial per symbol complexity
Both these methods have a computational complexity linear irgardless of the channel memory lengthas long as a
the length of the block of data to be detected, but exponentigyclic prefix of length greater than L is prepended to the data.
in the length of the channel memory (channel delay spreadilowever, if the channel memory is large the overhead due to
For communication systems with moderate or large bandhe cyclic prefix becomes significant. Also in a wireless mobile
width, the channel memory is large, and the Viterbi MLSE environment OFDM may be vulnerable to Doppler shift, and
as well as the MAP detection algorithm have high complexitin general it suffers from a large peak to average power ratio
under those conditions. As an example, in Enhanced Datéich is undesirable.
Rates for GSM Evolution (EDGE), 8PSK modulation is used |n this paper an iterative MLSE detector with hard out-

in GSM channels wher&=7 [4] implying that there are 7 taps puts is proposed with performance that is comparable to
in the channel impulse response (CIR). Even for a Single Inptie performance of the VA and MAP algorithm, but with
Single Output (SISO) system in EDGE an optimal MLSE (0gomputational complexity only quadratic in the data block
MAP) detector based on a Viterbi (or MAP) trellis would|ength N and the channel lengtiL. The formulation is
require somes® states, clearly beyond what is practical todaypresented for BPSK modulation, but generalization to general
Thus the use of Delayed Decision Feedback Equalizatioqn-QAM constellations is possible. The performance of the
(DDFE) [5] is proposed in [4] where the first few taps argterative MLSE detector is compared to that of the Viterbi
equalized using a reduced state trellis, while the ISI caused NM_SE a|gorithm via computer simulation, and it is shown
the rest of the taps in the CIR is removed by applying feedbagKat the new MLSE detector can detect signals in systems with
based on previous detected symbols. This process causes ngigh higher channel lengths than what is currently possible. It
enhancement and there is a corresponding reduction in Bitshown that a channel with =200 and BPSK modulation
Error Rate (BER) performance so that the DDFE method igan be equalized with relative ease using the new iterative
suboptimal. equalizer, while for Viterbi MLSE the trellis would have
For Multiple Input Multiple Output (MIMO) systems, joint required some'% states, clearly an impossible task.
detection of independent data streams is required, and COM-rpe paper is organized as follows. The iterative MLSE
plexity over the SISO system grows exponentially with th% tector with hard outputs is presented in Section 2, while
number of transmitting antennas. For that reason, suboptin] ?Section 3 it is shown that the computational comr,JIexity
methods have been developed with realistic computationg quadratic in the data block lengtv and the channel
complexity, at the cost of BER performance 36]The ap- length L. In Section 4 the raw (uncoded) BER of the new
proach taken in [6] is based on set partitioning [7] and delay LSE method is compared to the performance achievable

1Als0 referred to as the BCJR algorithm. with the Viterbi MLSE detector, for different channel lengths

2The issue of providing soft decision detection to aid the error correctiolith frequ?ncy se_zlectlve Rayleigh fading. Conclusions are
decoder is not dealt with in [6]. presented in Section 5.

. INTRODUCTION



Il. THE ITERATIVE MLSE DETECTOR WITH HARD

Consider a data block of payload bits of lengih assuming
the CIR hasL taps and that the block of payload bits are

For SISO systends the frequency selective channel mode[nitiated and terminated bg-1 known tail symbol% as shown

OUTPUTS
considered here is given by [2], [10]
L-1
TR = Z hjsk—j + ng, (1)
j=0

in Fig. 1, and

L—k—1
A = E hjhj+k,
Jj=0

wheres), denotes theéth symbol in the transmitted sequencewith £ =1,2,3,...,L — 1, T is given by

of N symbols (the block length) chosen from an alphabet
containingM complex symbols:;, is thekth received symbol,
ny, is the kth Gaussian noise samplé(0,0?), andh; is the
jth coefficient (or tap) of the estimated CIR valid for the data
block under consideration [4].

For a block of transmitted symbols of length, the

proposed iterative Maximum Likelihood Sequence Estimator

(MLSE) minimizes the cost function [10]
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to find the most likely transmitted sequence =
{s1,82, -+ ,sn}T where® denotes the transpose operation.
The VA is able to solve this problem exactly, with computa-
tional complexity linear inV but exponential in [10].

A. An appropriate Lyapunov function and iterative MLSE
detector

The iterative MLSE detector will be formulated here for
BPSK, while the generalization to general modulation constel-
lations is possible but not considered in this paper. Equation
(2) can be written as

1
L= —isTTs —1Ifs, 3)

whereI is a column vector withV elements,T is a square
matrix with N rows and columns, andimplies the Hermitian

0 a, a, ap_, 0
Q 0 Q, Qs ap 4
a, o, 0 o, ap
Oy Qy Qy
Qp g 0 Qy Qy
aL—l 0(2 al O al
L 0 Qr_y Ay ay 0
andlI is given by
riho+...+r b, —a —a, — o,
T2ho +"'+TL+1hL—1 —Qy — ... Oy
rohg + .+ T LR~ —a
TL—lhO +.t r2L—2hL—1 —Qp
rohy + . Fry, R
TN—L+1h’O +.. ot ryh
TN—L+2h0 +. +TN+1hL—1 Qp g
TNfzho +"'+TN+L—3hL—1 - —Qp
T Po+ oo+ Ty shp  —ay— o —ap
rvho + ooty b g —a,— o —ap

(4)

()

(6)

transposeT is symmetric and banded with the width of the \wjith reference to the functiog shown in Fig. 2, in the

band of non-zero elements determined/hyand it is a func-

tion of a = {1, 2, -+ ,ar_1}, which in turn is a function of  variableu, as

of the CIRh = {hg, hy,--- ,hr_1}T. I on the other hand is

sk = g(Bug).

limit where the gaing — oo, s; can be written as a function

)

a function of the observatiohs = {ry, 72, - ,7n4r_1}7, _ . o
anda. It was shown in [11] that (3) is a Lyapunov function (in the
high gain limit where3 — oo) for the dynamic system given
[Eollooe [so]s s8] N EAEN N s by
du u
| T, ‘ T, ‘ T ‘ ........... Tos | Tun | T | T [Ty | oveeee o — = —— +Ts+1, (8)
dt T
= where 7 is an arbitrary (settling) constant and
u = {uj,uz, - ,un}’. The dynamical system starting

Fig. 1. Transmitted and received data blocks.

from a zero initial state will move to settle into a steady state

denotedu* so thats* (corresponding tax*) will minimize
3The formulation can be generalized to MIMO systems in a straightforwarth€ cost function. s* is therefore the MLSE sequence

manner

“Instead ofN' observationsN' +- L — 1 observations are used to preserve SThe transmitted tails are, , to s, andsy_, to sy, , and are equal

the multipath information for optimal ISI mitigation tol



IIl. THE COMPUTATIONAL COMPLEXITY OF THE

08 PROPOSED ITERATIVEMLSE DETECTOR
06
A block of N transmitted symbols = {s1,s2, -+ ,sn}
o4 is transmitted and is to be detected using the MLSE detector
02 given by (9). The iterative MLSE detector requirgsitera-

tions, and in the next section it will be shown thatmay be

chosen as 20. Although 20 iterations are used as the norm,

-02 it can be adjusted to be as low as 5 for systems with longer
/ CIR lengths (. > 20), without a penalty in performance. This

is possible due to the effective time diversity provided by the

06 frequency-selective Rayleigh fading channels.
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Fig. 2. The sigmoid functio(u). 25 /

estimate.

1) The iterative MLSE detector with hard output#n
iterative solution for (8) is given by

Number of computations
o
\

;
un+1 — T + I //
S7L+1 _ g(ﬁun-&-l) (9) 05

wheren indicates the iteration number. Equation (9) represent: 0,%/*/

the proposed iterative MLSE detector. As the system iter ? ¢ e CRlengthl) 2 "

ate$, 3 is updated systematically according to an exponential
i
fun_Ctlon to e”_su_re th&_lt the SySt?m converges to a neaffl'g. 3. Computational complexity comparison of the new MLSE detector
optimal local minimum in the solution space. TReupdates and the Viterbi MLSE detector.
are performed according to the function

N In general for a modulation alphabet using BPSK, a data
8=5""7 |, (10) block length of N, a CIR length of L, and Z iterations,
the computational complexity of the new MLSE detector is
whereZ indicates the number of iterations. This cauges 2ZN(N + 3) + 4L(N + 1) + L? 1° The Viterbi MLSE
to start at a near-zero value and to exponentially convergrtector has a computational complexity N A7 (=1 (M=2
to 1 with each iteration..This, together Wi'fh aSYHChYQHOUﬁ)r BPSK). Fig. 3 shows the computational complexity com-
update$, ensure near-optimal sequence estimation. It is algsarison of the two detectors, where the data block length was
useful to add an extra tefirto «"*! with each iteration for chosen to be 50, with the CIR length frof=2 to L=15,
systems with short CIR lengths. (< 15) and for systems and Z=20 iterations. For SISO systems, where the channel
with longer CIR lengths at low signal-to-noise ratio (SNR)memory length is small (for BPSK the break-even point is
values. This will cause the system to escape less optimal local about Z=8), the computational complexity of the new
minima in the solution space, in order to increase the BERILSE detector is much higher than that of the Viterbi MLSE
performance. These observations will be tested in Sectiondétector. However for channels with large the advantage of
by examining the BER when the iterative MLSE detector iiaving computational complexity per transmitted symbol that
compared to the Viterbi MLSE detector. is quadratic inV and L rather than exponential ii becomes

clear and the reduction in complexity is significant.
6The CIR and the received symbols must be normalized
"These values can be store in a lookup table

8The update schedule is sequential OFor N >> L, as is the case in practical systems, the computational
9The added term wass3 complexity can be approximated 7 N (N + 3)



IV. NUMERICAL RESULTS Next, the case of long CIR lengths are considered. These

are systems with CIR lengths that are too long for the Viterbi

s Isr: etmsesrﬁclt;o?r,] thgl:r,asv}i%r;?jgggfgchor;a;zg]?;?r:;]c:i@g/lLSE detector to be applied. Because the computational com-
Y ploying 5 : mp d)lexity of the proposed iterative MLSE detector is quadratic
detectors. The first is the proposed iterative MLSE detect I and L, it can detect BPSK signals in systems with
and the second is the Viterbi MLSE detector. Frequen f

selective Rayleigh fading[12] channels in burst middith c1¥teral|y hundreds of CIR taps. However, the performance of

short CIR lengths and long CIR lengths are investigatet(g]e new MLSE detector can no longer be compared to that

) . . . of the Viterbi MLSE detector, as the latter detector cannot be
separately. In all simulations the nominal CIR settings Werseimulated under these conditions
chosen ah = {1,1,---,1} and normalized so that’h = 1 '

irrespective of the CIR length, wheleis a column vector and

T denotes the transposg.— 1 tail symbols were also added
on both sides of the burst as is the case in practical commi 104§
nication systems. Least Squares (LS) channel estimation w e 3
used to estimate the CIR in the receiver. This was done ¢
that the effect of imperfect channel estimation is included ir 10 o \
the BER results for both algorithms. Additive white Gaussiar
noise was added in the receiver, the symbol rate,was set o . e
to 3.7us and the carrier frequency was 900 MHz. ® %
10” 10* iK
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@ \ Fig. 5. The BER for CIR lengths 20, 50, 100 and 200 with Rayleigh fading.
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We will now consider channels with CIR lengths of 20,
50, 100 and 200, with a data payload block length of 1000,
using 20 iterations and a speed of 3 km/h. The number of
pilots used for channel estimation was chosen to be 4L. The
BER was evaluated via computer simulation as shown in Fig.
5. The results confirm that the new iterative MLSE detector
successfully detected the BPSK signals in the long frequency

selective fading channels.
Fig. 4. The BER for CIR lengths 2, 6 and 10 with Rayleigh fading.
V. CONCLUSIONS
First, CIR lengths of 2, 6 and 10 are considered. The dataAn iterative MLSE detector with hard outputs was proposed
block contained 200 uncoded data payload Wisjterations and compared to the Viterbi MLSE detector via computer
were used for the new MLSE detector and the mobile spe&éimulation. Results showed that the proposed MLSE detector
was set to 50 km/h for all the cases. The number of pilots usgdoduces a slightly worse BER than the Viterbi MLSE detector
for channel estimation wa3L. The BER was evaluated via for channels with short CIR lengths with frequency selective
computer simulation as shown in Fig. 4 for the Viterbi MLSEfading. However, because of the computational significance of
detector and the proposed iterative MLSE detector. The BEIRe new MLSE detector, it is able to detect signals in systems
indicates that the performance of the new MLSE detector With very large CIR lengths, where the Viterbi MLSE cannot
comparable to that of the Viterbi MLSE detector. For low SNRbe applied, let alone simulated. It is clear that, based on the
values, the proposed MLSE detector’s performance matchegsults presented, there now exists a general detector for BPSK
that of the Viterbi MLSE detector very closely. However, agnodulation to detect signals in systems with much longer
the SNR increases, there is a small performance degradat@iR lengths than what is currently possible. Computational
in the proposed MLSE detector. complexity for the new MLSE detector was shown to be
2ZN(N +3)+4L(N + 1)+ L?, while for the Viterbi MLSE
LFrequency hopping is employed so that each burst fades independentietector the complexity isc NME-D),
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