
1

A Simple Implementation for Unmarked Road Tracking

Abstract – This paper presents a simple implementation for
unmarked road tracking. It is mainly based on the
calculation of road vanishing point position relative to the
vehicle. An algorithm is derived to calculate the vanishing
point location. This algorithm is made robust by
introducing solutions to noisy peeks, unbounded vanishing
point location, and irrelevant lines. Also, the paper defines
a method to solve surrounding environment inconsistency
by adaptation of thresholds. The paper shows experimental
results on both modeled and real world environments.

Keywords – vanishing point, autonomous vehicles, image
processing, road tracking

I. INTRODUCTION

The need for computerized driving systems has grown
significantly in the past few years. Target systems vary from
warning drivers, as lane departure warning systems [9], to
aiding driver, like breaking the car in emergency cases, and
ending up with complete autonomous vehicles which is still in
research. The importance of autonomous vehicles grew as the
need of its applications increased as commanding the vehicle
to come to its owner as luxury uses or sending vehicles
through battle fields and contaminated areas as safety
functions.

One of the main challenges for automating vehicles is
maintaining road direction within different environments.
Some suggested solutions were based on lane tracking [8].
This solution may not be applicable in some cases as driving
the vehicle within crowded areas where lanes are hidden by
other vehicles, or using roads that are not even marked which
form a significant percentage in some developing countries.
Other solutions were based on collecting information from
surrounding environment. Some of them are based on
calculating the relative position of the road’s vanishing point
and heading towards it. Robust algorithms [5, 6] evolved to
calculate the vanishing point location. Some of these were
based on complex calculations.

This paper presents a simplified algorithm to track the
vanishing point for road guidance purposes, trying to avoid, as
much as possible, complex and exhaustive calculation to be
implementable on currently used processors in automotive
industry. The paper starts with going through some concepts
that are needed to read further. This is followed by details of
the algorithm implementation. The section after illustrates the
faced problems and the corresponding suggested solutions.
Then, experimental results are shown from both modeled and

real environments. We conclude the paper with further
improvements that can be applied to tune the system.

II. IMAGE PROCESSING CONCEPTS

In this section some image processing concepts are introduced
to provide a base for reading the rest of the paper. The section
starts with a definition of image representation in computers
and afterwards goes through operations to be applied on them.

A. Image Representation

Digital images are represented by their pixel intensity values.
Images are represented by a 2D matrix for each channel, for
example, colored images are represented in RGB space is
stored in three 2D matrices, while gray scale ones are
represented in a one 2D matrix. Each cell in the matrix holds
the value of channel intensity for the corresponding location of
the pixel.

B. Image smoothing

Image may contain sudden changes between neighboring
pixels which cause sharpness in it. Image smoothing is done
by decreasing the differences between neighboring pixels.

The simple idea is to calculate for each pixel a new value
which is equal to the average values of the neighboring pixels
including it. In fact, a smoothing mask1 can be regarded as a
low pass filter, which passes only low frequencies2 in the
image. The values of neighboring pixels can be weighted if
needed to put emphasis on some property, or even change the
target use of the used mask.

Smoothing can be useful to achieve several goals. First, roads
are full of noise due to the presence of trees, people, or other
objects. Smoothing removes some types of noise, but it also,
weakens the edges. Second, smoothing can be also regarded as
averaging operator which can be used to collect information
about a region instead of a single pixel.

1 A mask is the pixels that are used to calculate the value for a specific pixel.
2 ‘Frequencies’ means the changes between the adjacent pixels. A black pixel
with a neighboring white pixel has a maximum frequency, while two
neighboring pixels having the same color is of zero frequency.

2

Figure 1: A line drawn in (x, y) space.

C. Edge Detection

Edges are the pixels that have a sudden change, represented
their intensity, in brightness relative to neighboring pixels. The
absolute difference between the pixel values is proportional to
the edge strength; i.e. the pixel probability to be an edge.

Edges are useful to detect lines. These lines can be captured
from the surrounding area of the vehicle and used to calculate
the direction of the road.

A robust edge detection algorithm is Canny Edge Detector [7].
It has a lower and a higher threshold. Pixels having higher
edge strength than the higher thresholds are considered an edge
at once. The lower threshold is used for edge linking, where
edges with weaker values lower than the canny higher
threshold when neighboring to edges then they are considered
edges.

D. Hough Transform [7]

As stated before, images are represented by pixels. So, a line in
an image is just a group of pixels positioned beside each other;
there is no actual representation for that line preventing the
extraction of any information about the line if it remains in its
primitive state. Hough transform try to gather primitive shapes
in a given image, like lines or circles.

Our main concern in road guidance is lines detection. A line
equation in an (x, y) space is given by

baxy  (1)

where all points belonging to this line satisfies this equation.
The constants here are a and b, which represents the line slope
and constant respectively. For a given point, its y-axis and x-
axis values are known. So this point lies on all lines where x
and y values satisfies their equation.

In (a, b) space, where x and y values are know and a and b
values aren’t known, each point represents a line with a give
slope a and constant b. A line in that space represents all lines

Figure 2: Points represented by lines in (a, b) space.

in (x, y) space that passes through a certain point having a
given (x, y) value. The equation of a line in (a, b) space is
given by

xayb  (2)

A two-line intersection in (a, b) space means that there may be
a line passing through these two points. When more lines in (a,
b) space intersects, then that means that there are more points
on that discovered line. So, to avoid detecting lines that are not
really lines, a certain threshold should be used to discard weak
lines.

In Figure 2, the intersection of the two (a, b) space line
represents the line shown in Figure 1. The (a, b) space can be
called the Cartesian Hough space.

The mentioned representation suffers failure to detect lines
with slope equals to infinity. So another representation was
defined based on the distance between the line and the origin
point and the line angle with the horizontal.

Hough transform is used after edge detection to perform
surrounding lines extraction. Detected lines are redrawn with a
weighting factor for each. A suggestion is to apply another
Hough transform to detect their places of intersection in an
operation called Cascaded Hough Transform [1].

III. ROAD DETECTION

The goal is to keep track of current road direction even though
lane markings may disappear. This is achieved by keeping
track of the road vanishing point relative to images acquired.

An important issue is to keep the calculations as simple and as
fast as possible. Complex calculations were avoided as
possible, instead numerous simple ones are used which may, if
needed, run in parallel.

This section starts with defining vanishing point and showing
the way of calculation used. This is followed by showing
enhancements to the way of calculation to solve problems
faced.

3

A. Vanishing Point

The vanishing point lies on the horizon line where the sky and
land meet in the image. At this point actual parallel lines seem
to converge and intersect.

This point marks the relative direction of the road to the
vehicle which is extracted from the parallel lines in the
surroundings. The sources of parallel lines can be as follows:
1. Roads boundaries which are normally parallel or semi-

parallel.
2. Neighboring vehicles which are moving in the correct

road direction form parallel lines to the road boundaries
and to each other.

3. Buildings which are built on the sides of the road.
Also, other sources can be present other than those stated.

The location of the vanishing point defines the relative
orientation of the vehicle to the road. If it is located in the
middle of the image that means the vehicle is moving in the
same direction; i.e. parallel, as the road. If the point is located
at the right side of the image that means the vehicle needs to
steer right to maintain the road direction, and vice versa for the
case where point lies in the left side.

B. Calculating Vanishing Point Location

The location of the vanishing point can be marked using the
following steps.
1. The image is captured in full color.
2. The color image is converted to grey scale image.
3. The grey scale image undergoes edge detection to produce

edges image.
4. The edges image undergoes Hough transformation. The

detected lines are redrawn each with intensity equals to 1
unit to produce accumulator image. In case a line passes
through a previously marked pixel, the pixel intensity
value is incremented.

5. Accumulator image is scanned to detect the pixel with the
highest value.

Figure 3 shows the steps of the above sequence. Note the
intensity of grey pixels, as the lines intersect the pixel intensity
value increases and as they become sparse it decreases.

C. Making the Algorithm Robust

The first problem the previous algorithm faced is the presence
of false peak points. An example of this can be seen in Figure
3(c) where lines coming from the right side near the middle of
the accumulator image. To vote based on peak regions rather
than points a smoothing filter, as in equation 3, is passed
through the image to get the average values in the different
regions.

(a) (b)

(c)
Figure 3: Vanishing point calculations; (a) step 1, (b) step

3, and (c) step 4.

























11111

11111

11111

11111

11111

25

1
filter

(3)

As the vanishing point should be located away from the lower
part of the image, the lower part is excluded from the search
for peak regions. This avoids detecting false horizon points at
the lower part of the image, and also enhances performance.

A more complicated problem appears when using a non wide
lens cameras, the horizon point may fall outside the calculation
image; i.e. accumulator image. To solve this problem Cartesian
space is divided into subspaces to represent the location of the
point outside the image. A space is needed to represent the
point location when its x-axis value tends to go to infinity or
negative infinity and another space to when its y-axis value
tends to go to infinity or negative infinity [3]. Normally, the
camera orientation can be adjusted to avoid locating the
vanishing point towards y-axis infinity, but for the point lying
at the left or right of the accumulator image we can’t.

So, points lying near the origin tend to be located at infinity,
and points lying at the edges of the subspace 1 lye at the edge
of subspace 2. Similarly, subspace 3 can be evaluated.

The peaks from each subspace are weighted and compared,
and depending on the implementation one is chosen to be the
selected vanishing point. Points’ location can be calculated in
subspace 2 as shown in equation 4 and 5.

4

x

y y/x

1/xx

y

 (a) (b) (c)
Figure 4: Cartesian space (a) divided into 2 subspaces;

centeral space shown in (b) (subspace 1) and x-axis
infintyshown in (c) (subsapce 2)

xx 1'
(4)

x
yy '

(5)

The main advantage of this approach is that we can detect the
vanishing point wherever its location is. But, there are also
disadvantages. A very efficient implementation is needed for
real time applications, as the computations are increased for
more than one subspace in addition to the division operations
needed. Also the size of subspace 2 has a direct impact on the
accuracy of computing the location of the vanishing point.

As a result of camera orientation change to detect the horizon
point within the accumulator image, road direction changes
may be detected earlier than supposed to. A first solution can
be implemented by inserting a delay between detection and
decision making by queuing the detected points. This isn’t a
robust solution, since not all direction changes needs delay,
even some doesn’t need at all. Another is to reorient the
camera angle towards the ground and extend the main
subspace with the needed increase in y-axis direction. This
solution has also a downside which is decreasing the details
seen by the camera.

Another problem is the detection of irrelevant lines. Though
Hough transform has an advantage of its robustness even in the
presence of noise, captured images may still contain irrelevant
lines due to the environment around the road which the vehicle
is moving through like the horizontal lines detected form the
back of the vehicle in front or vertical lines coming from
buildings. So, lines are weighted depending on their angle with
the horizon as shown in Table I.

Table I
Line weighting

Sub-
Space

Horizontal
lines3

Vertical
lines4

Inclined lines

1 0 0 Factor)sin(
2 Factor)sin( 0 Factor)sin(

3 Here it’s included in the definition of horizontal lines the
lines that are mostly horizontal, 85˚ to 95˚
4 Same as horizontal lines, but for the vertical case

Another adjustment can be added to fine tune the system is to
reject sudden changes in the location of the vanishing point. In
addition, the average x-axis values, as we’re interested only in
steering to left or right, are taken through a specified number
of frames.

D. Algorithms Adaptations

As the vehicle moves through different environments and
different times of day, thresholds need to be dynamically
adaptable to changes. For example, driving through a place
containing a lot of edges will lead to detection of more noise.
For that, both canny edge detection algorithm and Hough
transform needs to adjust their thresholds gradually depending
on their outputs at each frame. Each frame uses the thresholds
reached by the previous frame as the environment should
slightly change, so adaptation takes less time as the
surroundings doesn’t usually change suddenly. To avoid
falling into local minima where values for the thresholds aren’t
optimal, the thresholds are pushed back to default values after
certain number of frames. Figure 5 shows a flow chart
describing the sequence.

Each algorithm has its own adaptation adjustment criteria. For
Hough transform, the number of lines detected shouldn’t go
above certain number to avoid taking into account noisy lines.
Stronger lines only should be accepted. For canny edge
detection, the criterion is the percentage of pixels that are
chosen to be edges. If too many pixels are detected, then noisy
edges are detected.

Figure 5: Thresholds adaptation flow chart

5

IV. EXPERIMENTAL RESULTS

This section describes the results obtained on running the
system. The equipment used is stated first, and then the results
for experiments on built model and real world are shown.

A. Equipment

The equipment was chosen to have limited processing power
as used in automotives. So, two processors were used
interchangeably; an Intel Pentium 3 and another Intel Pentium
4 with 256MB RAM. The camera was a CMOS 1.3 megapixel
that streamed images with a resolution 320 × 240. The same
camera was used in the real world and the modeled
environments. In the modeled environment a toy car was used
to model the real vehicle. Open Computer Vision library was
used as a resource to supply algorithms like canny edge
detection and Hough transform and other primitive functions.

B. Results in Modeled Environment

The toy car moved with percentage of correctness in the
modeled environment. It usually it reacted correctly to the
change in road directions even if it started in an inclined state,
though sometimes it misses curves at regions were high
reflection of the ground cause wrong estimation for the
vanishing point before the system could fully adapt its
thresholds.

Figure 6 shows operation images during successful detection
of a change in direction towards the right, due to the detection
of a peek in subspace 2. The average difference, through a
sequence of adapted images, in intensity between the peek

(a) (b)

(c) (d)
Figure 6: Experiment in modeled environment result; (a)
the original image, (b) edge detection, (c) subspace 1
accumulator image (d) subspace 2 accumulator image

region in subspace 1 and 2 is 118 units. Generally, subspace 1
peek value is added to strength constant that increases its value
against the peek in subspace 2. The need for this addition is
because of the high density of lines in subspace 2 in certain
regions because of the use of small calculation image which
affects the accuracy. Tracing the recorded images showed that
this addition isn’t robust and makes identification vanishing
point location to be sensitive to the value of the added
constant. But from the point of view of the application in
question, where we want to decide whether to steer towards the
left or right or not steer at all, it’s satisfactory to have the point
at the correct side regardless of its exact location.

C. Results in Real World Environment

The correctness of vanishing point location degrades in the real
environment. Reasons for this were:
1. The presence trees and people passing within the road

which may hide useful details.
2. The computations with adaptation along with camera

accuracy couldn’t cope with the speed of changes as the
vehicle moves quickly.

3. The presence of intersections which introduces a lot of
candidate directions.

4. The sudden reflection of light which blinds out significant
details.

5. The presence of obstacles that may completely cover the
road. (We may assume in this case that we should go the
same direction as the last known good state).

Nevertheless, significant percentage of images captured during
the test drive could point out the road direction correctly as
Figure 7. A note to be mentioned is that the adding factor to
subspace 1 peek value needed to be increased significantly to
obtain correct result.

(a) (b)

(c) (d)
Figure 7: Experiment in real environment result; (a) the

original image, (b) edge detection, (c) subspace 1
accumulator image (d) subspace 2 accumulator image

6

V. CONCLUSION AND FUTURE WORK

As the results were bellow a safe level of error free decisions,
the system, with its current equipment, isn’t mature enough to
drive a vehicle autonomously within a city. But it can be useful
as a driver aiding tool which adds safety and comfort.

Some significant updates can be done on more powerful
systems. One is to increase the size of subspace 2 to obtain
acceptable accuracy. Another update is to use more intelligent
algorithms to adjust the thresholds of used algorithms. In
addition, higher resolution cameras with wide lens would
increase the performance of the system.

REFERENCES

1. Tuytelaars, T.; Proesmans, M.; and Van Gool, L.; “The
cascaded Hough transform”, Image Processing, 1997.
Proceedings, International Conference on Volume 2, 26-
29 Oct. 1997, Pages: 736 – 739.

2. Cantoni, V.; Lombardi, L.; Porta, M.; and Sicard, N.;
“Vanishing point detection: representation analysis and
new approaches”, Proceedings of the 11th International
conference on Image Analysis and Processing, 2001.

3. Seo, KS.k; Lee, JH.; and Choi, HM.; “An efficient
detection of vanishing points using inverted coordinates
image space”, Pattern Recognition Letters, Volume 2,
Issue 2. 2006, Pages: 102 – 108.

4. McCall, J.; and Trivedi; M.; “An Integrated, Robust
Approach to Lane Marking Detection and Lane Tracking”,
Proceedings, IEEE Intelligent Vehicles Symposium, 2004.

5. Wildenauer, H; and Vincze, M.; “Vanishing Point
Detection in Complex Man-made Worlds”, 14th
International Conference on Image Analysis and
Processing, 2007.

6. Harouni, A,; Darwish, N.; and Talkan, I.; “Depth
estimation from monocular camera in urban
environment”, 2006.

7. Sonka, M.; Hlavac, V.; and Boyle, R.; Image Processing
Analysis and Machine Vision Second Edition, PWS
Publishing, 1998.

8. Wang, Y.; Teoh, EK.; and Shen, D.; “Lane detection and
tracking using B-Snake:, Elsevier Image and Vision
Computing, 2003.

9. Kol, S.; Giml, S.; Pan, C.; Kim, J.; and Pyun, K.; “Road
Lane Departure Warning using Optimal Path Finding of
the Dynamic Programming”, SICE-ICASE International
Joint Conference, 2006.

