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Application of a Generic Constraint-Based
Programming Approach to an Industrially Relevant

Robot Task with Geometric Uncertainties

Abstract— This paper shows the application of a generic
constraint-based task specification approach for sensor-based
robot systems to a laser tracing example. Key properties of the
used approach are(i) its ability to specify complex robot tasks by
introducing auxiliary task-oriented feature coordinates, defined
with respect to user-defined object and feature frames,(ii) its
support for both underconstrained and overconstrained robot
tasks, and(iii) its ability to integrate sensor measurements in a
unified way, using auxiliary uncertainty coordinates, to estimate
geometric uncertainties in the robot system or its environment.
Simulation and real world experimental results are presented.

Index Terms— constraint-based programming, task specifica-
tion, estimation, geometric uncertainty, laser tracing

I. I NTRODUCTION

I NDUSTRIAL robot control software contains adequate
motion primitives to specify robot tasks of limited com-

plexity, such as pick and place operations, in well known
structured environments. However, specifying (geometrically)
more complex tasks using off the shelf robot control software
can quickly become an inefficient, cumbersome, time consum-
ing and therefore costly operation. Additionally, no generic
solutions exist for the integration of sensor information in the
robot control software to estimate uncertain geometric param-
eters. Incorporating the estimation of geometric uncertainties
in the robot software can however substantially increase the
flexibility of the robot system and improve the execution
quality of its task. Especially applications where structuring
the environment is impossible or demands prohibitively high
costs can benefit from the estimation of geometric uncertain-
ties. This type of applications arises in for instance domestic
environments or in small series industrial production facilities.

The goal of our research is to develop programming support
so that robot systems can more fully realize their potential.
The backbone of this programming support is a novel generic
and systematic approach to specify and control a task while
dealing properly with geometric uncertainty.

Our preliminary work on a task specification framework was
presented in [1], while the mature framework is thoroughly
discussed in [2]. The contribution of this paper lies at(i) the
application of this approach to a laser tracing task, and(ii)
the implementation of this application both in a simulation
environment and on a real robot, hence substantiating the
framework’s power and practical advantages.

Previous work on specification of sensor-based robot tasks,
such as force controlled manipulation [3]–[6] or force con-
trolled compliant motion combined with visual servoing [7],
was based on the concept of thecompliance frame[8] or task
frame [9]. The drawback of the task frame approach is that it
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Fig. 1. The object and feature frames for simultaneous lasertracing on a
plane and a barrel.

only works well for task geometries with limited complexity,
that is, task geometries for which separate control modes can
be assigned independently to three pure translational and three
pure rotational directions along the axes of onesingle frame.

A more general approach is to assign control modes and
corresponding constraints toarbitrary directions in the six
dimensional manipulation space. This approach, known as
constraint-based programming, lies at the foundation of the
developed framework.

Seminal theoretical work on constraint-based programming
of robot tasks was done by Ambler and Popplestone [10]
and by Samson and coworkers [11]. Also motion planning
research on configuration space methods (see [12] for an
overview) specifies the desired relative poses as the result
of applying several (possibly conflicting) constraints between
object features.

This paper is structured as follows. Section II introduces
the example application of laser tracing. Section III defines
the auxiliary feature and uncertainty coordinates that areused
to model task constraints and geometric uncertainty. Subse-
quently, Section IV details a velocity based control scheme
which uses these auxiliary coordinates. Section V explains
the procedure used for updating the models and estimating
the geometric uncertainties in the system. Simulation as well
as experimental results are presented in Section VI. Finally,
Section VII discusses the proposed approach and summarizes
the main conclusions.
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Fig. 2. Object and feature frames and feature coordinates.

II. A PPLICATION

The robot task consists of simultaneously tracing a path on
a plane and on a cylindrical barrel with radiusR using two
lasers which are rigidly attached to the end effector of a robot
with six degrees of freedom. This is illustrated in Figure 1.As
shown later on, the task specification easily allows imposing
extra task constraints such as maintaining a fixed distance
or orientation of the lasers with respect to their associated
surfaces. Additionally, the lasers measure the distances to their
associated surfaces. This measurement information is usedto
estimate geometric uncertainties. In the presented simulations
and experimental setup, the position and orientation of the
plane are initially unknown, while the barrel’s axis is known
to be vertical but its exact position is unknown. Furthermore,
this paper deals with theexternal calibration of the laser
sensors, i.e. ascertaining the lasers’ positions and orientations
with respect to the robot end effector. Key properties of this
task that frequently occur in industrial robot tasks, are(i) the
underconstrained specification, which means that the robotis
a redundant system for the specified task: in this case the robot
has six degrees of freedom, while the tasks only imposes four
motion constraints, two for the plane and two for the barrel,
and (ii) the estimation of uncertain geometric parameters.
Note that this example application can serve as a model for
industrial applications with similar task topology such asrobot
spray painting, robot laser welding and robot scanning.

III. M ODELING

The general framework presents a novel modeling approach
that introduces two types of auxiliary task related coordinates
additional to the standard robot joint coordinatesq:

• feature coordinatesχf , to facilitate the modeling of
constraints and measurements by the user,

• uncertainty coordinatesχu, to represent modeling errors,
uncontrolled degrees of freedom in the robot system or
geometric disturbances in the robot environment.

These two types of coordinates are defined inobject frames
andfeatureframes that are chosen by the task programmer in
a way that simplifies the specification of the task at hand.

This section applies this novel modeling approach to the
laser tracing example. The modeling of other applications such
as visual servoing, cooperating robots, localization and path
tracking of a nonholonomic mobile robot, contour tracking
and human-robot co-manipulation is presented in [2].

A. Object and feature frames

A typical robot task accomplishes a relative motion between
objects1. The first modeling step is to introduce a set of
reference frames in which these relative motions are easily
expressed. The first frame is the “world” reference frame,
denoted byw. In this application the world frame is placed at
the base frame of the robot. The other frames are attached to
objectsand featuresthat are relevant for the task at hand:

• anobjectcan be any rigid object in the robot system (for
example a robot end effector or a robot link) or in the
robot environment,

• a feature is linked to anobject, and indicates anyentity
of that object that is relevant for the specification of the
robot’s task: aphysical entity(such as a vertex, edge, face,
surface), or anabstract geometric propertyof a physical
entity (such as the symmetry axis of a cylinder, or the
reference frame of a sensor connected to the object, such
as a camera).

In the application four objects are relevant: the two lasers,
the plane and the barrel. Relevant features are the intersection
points between the first laser and the plane and between the
second laser and the barrel since these points have to trace a
specified path.

For an application in 3D space, there are in general six
degrees of freedom between two objects. Given two objects
with associated object frameso1 and o2 and two feature
framesf1 andf2 linked too1 respectivelyo2. The connection
o1 → f1 → f2 → o2 forms a kinematic chain, that is,
the degrees of freedom betweeno1 and o2 are distributed
over three submotions (I, II, III) as shown in Figure 2. In
the application, two relevant kinematic chains are recognized,
one for the laser-plane combination (denoteda) and another
one for the laser-barrel combination (denotedb). The relative
motion between the two objects is thenspecified by imposing
constraintson one or on a combination of these submotions.

Figure 1 shows the chosen object and feature frames for the
laser tracing example. For the laser-plane feature:

• frameo1a fixed to the plane and with thez-axis perpen-
dicular to the plane,

• frameo2a fixed to the first laser on the robot end effector
and with itsz-axis along the laser beam,

• framef1a has the same orientation aso1a, but is located
at the intersection of the laser with the plane,

• frame f2a has the same position asf1a, but the same
orientation aso2a,

and for the laser-barrel feature:

• frameo1b fixed to the barrel and with its origin on and
thex-axis along the axis of the barrel,

• frame o2b fixed to the second laser on the robot end
effector and with itsz-axis along the laser beam,

• frame f1b located at the intersection of the laser with
the barrel,z-axis perpendicular to the barrel surface and
x-axis parallel to the barrel axis,

1In general, the framework also supports controlled dynamicinteractions
between objects, but the laser tracing example does not involve such interac-
tion.



3

• frame f2b with the same position asf1b and the same
orientation aso2b.

B. Feature coordinates

Task relatedfeature coordinatesχf are introduced to fa-
cilitate the task specification by the user. These coordinates
represent the submotions betweeno1 and o2. The choice of
feature coordinates is not unique, yet bywisely (i.e. task-
oriented) choosing the object and feature frames, the math-
ematical representation of the submotions is simplified, as
shown in the next paragraphs.

For the laser-plane combination the feature coordinates
expressing the submotions are:

χfI
a =

(
xa ya

)T
, (1)

χfII
a =

(
φa θa ψa

)T
, (2)

χfIII
a =

(
za

)
, (3)

where xa and ya are expressed ino1a and represent the
position of the laser dot on the plane, whileza is expressed in
o2a and represents the distance of the robot to the plane along
the laser beam.φa, θa, ψa represent Euler angles betweenf1a

andf2a and are expressed inf2a.
For the laser-barrel combination feature coordinates ex-

pressing the submotions are:

χfI
b =

(
xb αb

)T
, (4)

χfII
b =

(
φb θb ψb

)T
, (5)

χfIII
b =

(
zb

)
, (6)

wherexb andαb are cylindrical coordinates expressed ino1b

representing the position of the laser dot on the barrel, while
zb is expressed ino2b and represents the distance of the robot
to the plane along the laser beam.φb, θb, ψb represent Euler
angles betweenf1b andf2b and are expressed inf2b.

All feature coordinates are grouped into a single vectorχf :

χf =
(

χfI
a χfII

a χfIII
a χfI

b χfII
b χfIII

b
)T
. (7)

C. Uncertainty coordinates

To represent modeling errors, uncontrolled degrees of free-
dom in the robot system or geometric disturbances in the robot
environment,uncertainty coordinatesχu are introduced. In the
laser tracing example uncertainty coordinates are needed to
represent the unknown position and orientation of the plane,
the position of the barrel and, in the case of calibration, the
position and orientation of the lasers with respect to the robot
end effector.

The unknown position and orientation of the plane is
modeled by2:

χuI
a =

(
ha αa βa

)T
, (8)

with ha thez-coordinate of the intersection point of the plane
and thez-axis ofw with respect to the world, andαa andβa

the two Euler angles which determine the orientation of the

2The numbering of the uncertainty coordinates follows the notations of the
framework [2].

plane with respect to the world3. The unknown position of the
barrel is modeled by:

χuI
b =

(
xb

u yb
u

)T
, (9)

with xb
u and yb

u the x- and y-position of the barrel with
respect to the world. If the laser position and orientation with
respect to the end effector is also unknown, for example during
the calibration phase, additional uncertainty coordinates are
introduced:

χuIV =
(
xl yl zl φl θl

)T
. (10)

xl, yl andzl represent the positions of the laser with respect
to the robot end effectoro2. φl and θl denote the two Euler
angles which determine the orientation of the laser with respect
to the robot end effectoro24.

All uncertainty coordinates are grouped into a single vector
χu. When calibration has been carried out the uncertainty
coordinates reduce to5:

χu =
(

χuI
a χuI

b
)T
. (11)

D. Task specification

Task specification consists of imposing constraints on a
user-definedsystem outputy(t). For the laser tracing example,
the task goal is to generate desired paths on the plane and
cylinder. Hence, the system output and theconstraint equation
are given by6:

y (t) =
(
xa ya xb αb

)T
and y(t) = yd (t) , (12)

whereyi (t) represents a system output, andydi (t) the im-
posed constraint.

Finally, themeasurement equationsfor the lasers measuring
the distance to the plane and the barrel are given by:

z (t) =
(
za zb

)T
. (13)

IV. CONTROL

For the example, we assume a velocity controlled robot and
neglect its system dynamics. Hence, thesystem equationis
given by:

q̇ = u = q̇d, (14)

where the control inputu corresponds to the desired joint
velocitiesq̇d.

The output equationrelates the system state to the outputs
y:

f (q,χf ) = y. (15)

The system state, consisting ofq andχf is nonminimal. The
dependency relation betweenq and χf corresponds to the

3Since the plane is considered infinite, the rotation around the normal of
the plane is irrelevant.

4Since the laser beam is rotation symmetric, the rotation around the beam
axis is irrelevant and two Euler angles suffice.

5For calibration, (11) is extended withχuIV .
6Imposing additional constraints on the relative distance or orientation

between lasers and associated surfaces is done by extending(12) with the
corresponding constraint equations.
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loop closure equations which are perturbed by the uncertainty
coordinatesχu, and is expressed as:

l (q,χf ,χu) = 0. (16)

For the derivation of velocity based control the output and the
loop closure equations are differentiated with respect to time
to obtain equations at velocity level. The output equation at
velocity level is written as:

Cqq̇ + Cf χ̇f = ẏ, (17)

with Cq = ∂f

∂q
andCf = ∂f

∂χf
. Cq andCf can be easily found

by inspecting (7) and (12), which yields:

Cq = 0 and Cf =

(
1 0
0 1
0 0
0 0

04×4

0 0
0 0
1 0
0 1

04×4

)
. (18)

On the other hand, the velocity loop constraint becomes:

Jqq̇ + Jf χ̇f + Juχ̇u = 0, (19)

with Jq = ∂l
∂q

, Jf = ∂l
∂χf

and Ju = ∂l
∂χu

. Jq represents the
robot jacobian.Jf andJu can be found by inspection, based
on the definitions of the feature and uncertainty coordinates.
Solving χ̇f from (19) yields:

χ̇f = −Jf
−1

(
Jqq̇ + Juχ̇u

)
. (20)

Note thatJf is invertible7. Substituting (20) into (17) yields
the modified output equation:

Aq̇ = ẏ + Bχ̇u, (21)

whereA = Cq−CfJf
−1Jq andB = CfJf

−1Ju are introduced
for simplicity of notation.

In (21), constraint equation (12) is expressed at velocity
level. To compensate for drift, modeling errors and distur-
bances, a position feedback term is added:

ẏ = ẏd + Kp (yd − y) = ẏ◦

d , (22)

with Kp a matrix of feedback constants andẏ◦

d the modified
constraint at velocity level. Since the outputsy cannot be
measured directly, they are replaced in (22) by their estimates
ŷ provided by the estimator (as explained in Section V).

Applying constraint (22) to (21), while also substituting sys-
tem equation (14) and replacinġχu by its estimatêχ̇u (since
its real value may be unknown during the task execution),
results in:

Aq̇d = ̂̇y◦

d + B ̂̇χu. (23)

Solving for the control inpuṫqd yields:

q̇d = A
#

W

(
̂̇y◦

d + B ̂̇χu

)
, (24)

where#
W denotes the weighted pseudoinverse [13], [14] with

weighting matrixW . Furthermore, since the plane and the
barrel are not moving or, more accurately, are modeled to be
non-moving, ̂̇χu = 0 in this example. Therefore the control
input reduces to:

q̇d = A
#
W

̂̇y◦

d . (25)

7The fact thatJf is invertible implies that the global number of feature
coordinates must equal the number of independent loop equations.

Since the task specification is underconstrained, additional
constraints can be added without compromising the task
execution. In the overconstrained case constraints are weighted
with W . Alternatively, redundancy can be used to accomplish
secondarytask objectives (e.g. maintaining a relative orienta-
tion or distance between laser and surface). These secondary
constraints are solved in the subspace remaining after applying
the primary (i.e. the original) constraints, so that primary
constraints have absolute priority over secondary constraints
if primary and secondary constraints are conflicting.

V. M ODEL UPDATE AND ESTIMATION

The goal of the model update and estimation step is three-
fold: (i) to provide an estimate for the system outputsy to be
used in the feedback terms of constraint equations (22),(ii) to
provide an estimate for the uncertainty coordinatesχu to be
used in the loops (16), and(iii) to maintain the consistency
between the dependent system statesq and χf based on the
loop constraints. The model update and estimation step is
based on an extended system model consisting of(i) the robot
system model,(ii) the velocity loop constraints, and(iii) the
dynamic model for the uncertainty coordinates. The states of
this extended model areq, χf , χu.

A predictor-corrector procedure is proposed here. The pre-
dictor consists of two steps. The first step generates predicted
estimates based on the extended system model. The extended
system model for the example application is given by8:

d

dt

( q
χf
χu

)
= 0n×n

( q
χf
χu

)
+

(
1k

−Jf
−1Jq

0m×k

)
q̇d, (26)

with k = 6 the number of joints,m = 5 the number of
uncertainty coordinates,n = k + l + m the total number of
state variables in the extended model andl = 12 the number
of feature coordinates.

This model consists of three parts: the first line corresponds
to the system model (14), the second line corresponds to the
velocity loop constraint (20), and the last line corresponds
to the model used for the uncertainty coordinates. Since in
this case the uncertainty coordinates which are estimated are
constant (plane position and orientation and barrel position)
the model for the uncertainty coordinates is very simple:

χu = Cte or
d

dt
χu = 0m×1. (27)

A second step eliminates any inconsistencies between these
predicted state estimates: the dependent variablesχf are
made consistent with the other estimates (q, χu) by itera-
tively solving the position loop constraints (16)9. Similarly,
the corrector consists of two steps. The first step generates
updated estimates based on the predicted estimates and on the
information contained in the sensor measurements. Since these
measurement equations are expressed inχf (13), the position

8In general the extended system model is more involved [2].
9Since in this step no extra information on the geometric uncertainties is

available, and since there is no physical motion of the robotinvolved, both
χu andq are kept constant. Adaptingχf is sufficient to close any opening in
the position loops, sinceχf can be solved unambiguously from these position
loops.
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loop constraints (16) have to be included in this step to provide
the relationship with the other coordinates. In the case of the
laser tracing example each laser distance measurement fits to
one feature coordinate. Therefore the measurement equations
contain a simple selection matrix:

(
z1
z2

)
=

(
02×5

1
0

02×5
0
1

)
χf . (28)

Different estimation techniques can be used to obtain optimal
estimates of the geometric uncertainties. Extended Kalman
filtering is an obvious choice because of its low computational
cost and since all equations for extended Kalman filtering
are straightforwardly derived using (26) and (28). For other
estimators, detailed numerical procedures are described in
literature [15]–[19].

Finally, since the corrector procedure may re-introduce
inconsistencies between the updated state estimates, the second
step of the predictor is repeated, but now applied to the updated
state estimates.

After prediction and correction of the states, estimates for
the system outputŝy follow from (15).

Note that the basic Kalman filter, which is an exact Bayesian
filter, is limited to linear system and measurement equations.
The extended Kalman filter however is only anapproximate
Bayesian filter since it relaxes this linearity assumption.
Hence, for non-linear models, it only exhibits acceptable
behavior forsufficiently smallstate errors and uncertainties.

VI. RESULTS

A simulation experiment (Matlabr) is carried out in which
desired paths are traced on a plane and on a barrel with radius
R = 0.285m. The desired paths on the plane and barrel
are two different Lissajous curves, both with a period of8s.
Results of this simulation are shown in Figure 3. The initial
estimate of the plane differs from the real one by0.3m for the
z-position of the intersection point of the plane and thez-axis
of w, 5◦ for Euler angleαa and 5◦ for Euler angleαb. The
initial estimate of the barrel’s position differs from the real
one by0.2m in thex-direction and0.1m in the y- direction.
An extended Kalman filter is used for the estimation in which
extra process uncertainty is applied to enhance the convergence
(by multiplying the covariance with a fading factor1.1 for the
plane and1.12 for the barrel, as explained in [16]).

Furthermore a real world experiment is carried out in which
the position of a barrel with radiusR = 0.285m is estimated.
To estimate this barrel the laser is moved back and forth along
they-axis of the world at a fixed height as shown in Figure 4a.
Figure 4 also shows experimental results for the estimation
of the barrel position using a Baumer laser distance sensor
(OADM 2016480/S14F) mounted on a Kuka361 industrial
robot. Additionally, to compensate for robot system dynamics
and numerical inaccuracies, joint anglesq are replaced by
encoder values, which avoids integratingq̇. For the same
reason, the joint velocities are replaced by a finite difference of
encoder values in the extended system equation(26). The ex-
periment is implemented using Orocos, a C++ framework for
advanced machine and robot control10. The initial estimation

10Open RObot COntrol Software,http://www.orocos.org/.

errors for the barrel are approximately0.4m in thex-direction
and 0.15m in the y- direction. The same filtering procedure
as explained above is used for the experiment. The figure
shows the distance to the surface measured by the laser and the
estimation results. The position of the barrel is estimatedwith
reasonable accuracy after approximately5s. Higher estimation
performance can be obtained by(i) reducing measurement
noise,(ii) increasing the information content (entropy) of the
measurements by altering the prescribed robot motion,(iii)
reducing modeling errors (such as calibration errors) and(iv)
using more advanced estimation techniques, as discussed in
Section V.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper shows the application of a novel generic ap-
proach for constraint-based task specification in the presence
of geometric uncertainty. One of the innovative concepts in
this approach is the introduction of auxiliary feature and uncer-
tainty coordinates. Using these coordinates greatly simplifies
task specification and dealing with geometric uncertainties.
Simulation and experimental results for the laser tracing
application show the validity and the potential of the approach.
Current research focuses on:(i) applying more advanced,
mainly Bayesian estimation techniques to handle larger and
higher-dimensional uncertainties,(ii) linking the presented
framework with high-level task planners, and(iii) developing
an Integrated Development Environment (IDE) for sensor-
based robot tasks, including a graphical user interface. Given
the generality of the approach, large parts of the described
task specification procedure can be automated. This way, the
required time and user skills for setting up complex sensor-
based robot tasks will be substantially reduced.
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