
1

Design of inverse controller with cross-coupling
suppression for UPFC series converter

Abstract— The power flow control problem of a transmission
line equipped with a Universal Power Flow Controller is inves-
tigated. Two controllers for the series converter of a UPFC are
proposed. Dynamic or static model inverses are used to linearize
control and suppress cross-coupling dynamics. Both controllers
realize first order step responses with arbitrary time constant and
cross-coupling suppression. Main benefits of these controllers are
low controller complexity, minimal required system parameter
knowledge and first order system behavior with arbitrary time
constant. Controller complexity is no more than two parallel
PI controllers for the steady-state inverse controller, or four
for the dynamic inverse controller. Cross-coupling suppression
performance of both controllers depends only on knowledge
of inductance-resistance ratio of transmission line. Simulation
results at 1 kHz demonstrate cross-coupling suppression and
first order behavior. Control bandwidth allows damping of inter-
area oscillations.

I. I NTRODUCTION

A GROWING demand for electrical energy in Europe is not
met by an equal growth of the transmission system. Ex-

isting transmission lines were designed for local delivery and
interconnection lines were designed for emergency support. As
the European electricity grid now hosts a liberalized energy
market, these lines now guide international power flows. The
system frequently reaches it’s stability limit and effects of
local faults spread wider, as control options are exploited to
maximize profit. New, flexible tools to control power flows on
the transmission network are topic of ongoing research.

Flexible Alternative Currents Transmission System
(FACTS) is a family of power electronic devices capable
of dynamically controlling power systems. The Universal
Power Flow Controller (UPFC) is the most versatile of
devices in the FACTS concept, being able to control three
basic variables of a transmission line, namely transmission
voltage, line impedance and phase angle. In formula 1,
active and reactive powerP,Q transported by an ideal purely
inductive transmission line are given, in function of sending
and receiving end voltagesVS , VR, line impedanceX and
phase angleρ. This is a commonly used model for overhead
lines, whose impedance is mainly inductive. As a UPFC can
control the sending end voltageVS , phase angleρ and line
impedanceX, it can adequately control active and reactive
power flow on a transmission line.

P =
VS · VR · sinρ

X
Q =

VS
2 − VS · VR · cosρ

X
(1)

A UPFC consists of two AC-DC converters, connected back
to back with their DC side. The AC sides are connected to
the transmission line, one in shunt, the other in series of the
line by means of a coupling transformer. In Figure 1, a one
wire schematic of a UPFC is depicted. VoltagesVP and VC
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Fig. 1. One-wire schematic of transmission line equipped with UPFC
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Fig. 2. Fasor representation of effect of UPFC on currenti, componentid, iq
and thereby on active and reactive power

represent shunt and series converter voltages of the UPFC.
L and r represent inductance and resistance of the overhead
line. Both converters can independently absorb and generate
reactive power, and active power can flow in both directions
between shunt and series converter. The DC energy storage
serves as a buffer for momentary active power flow imbalances
between converters. This allows the series converter to inject
an arbitrary series voltage, realizing power flow control and
impedance compensation, while the shunt converter balances
the active power flow and injects reactive power for voltage
stabilization of the sending end. Converters used for UPFC’s
are typically voltage sourced converters, having a capacitor as
(limited) DC energy storage.

The effect of a UPFC on active and reactive power flow
is shown in fasor representation in Figure 2. For simplicity,
the resistive component of the line impedance is neglected.
Results and conclusions are not affected by this. In Figure 2(a),
sending and receiving voltagesVS , VR are shown with phaseρ,
and a currenti, which is perpendicular to the differenceVS −
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VR because of neglecting the resistance of the line. Current
i can be decomposed into direct and quadrature components
id, iq, representing the active and reactive current, and thereby
the active and reactive power. For a given transmission line
impedanceX, voltagesVS , VR and phase angleρ, active and
reactive power flow are fixed. In Figure 2(b), the injected series
voltage VC , with phase angleδ to sending end voltageVS ,
influences directly the differenceVS + VC − VR, resulting in
control over the active and reactive power flow. The series
converter will operate only in a certain amplitude boundary,
represented by a circle. Considering this limitation, arbitrary
combinations ofid, iq can be realized by controllingVC and
δ. The fasor representation is only useful for steady state
solutions, since dynamics can not be represented.

In an attempt to summarize the evolution of UPFC control
design for power flow control, the steps taken from direct
control, over decoupling control to cross-coupling control from
direct and quadrature series injected voltagesVCd, VCq to
active and reactive powerP,Q are a first important mile-
stone [1], [2]. These controllers were based on PI control
structures, and did not intrinsically rely on system parameters.
A second step was taken by using cross-coupling control with
direct control oscillation dampening [3], which enhanced per-
formance. Further controllers increase controller complexity,
leaving the full potential of PI based controllers unexplored. A
next step introduced the instantaneous power concept, where
current references were calculated based on instantaneous
measurements of power, voltages and currents [4], [5], [6]. The
final step was incorporating power source basic control and
dynamics into the system model, to optimize damping of inter
area oscillations. The obtained model is called the Philips-
Heffron model of the power system and requires precise
knowledge of numerous parameters of both transmission line
and power sources. Controllers based on this model have high
controller complexity [7], [8], [9], [10].

In this paper, two controllers for the series converter of a
UPFC are proposed, maximizing the performance for con-
trollers based on PI control structures. The controllers are
based on a dynamic and steady-state model inverse of the
power system. Exploiting system dynamics for control, con-
troller complexity is limited to two parallel PI controllers for
steady-state inverse controller, and four for dynamic inverse
controller. First order system behavior with arbitrary time
constant of the controlled system is realized. Cross-coupling
of active and reactive power is suppressed, depending only
on inductance/resistance ratio of the transmission line. The
control of the shunt converter is not discussed in the remainder
of this work as it is only used for voltage control at the
sending end, and to maintain the power balance between
shunt and series converter by energizing the DC capacitor.
Section II constructs the dynamic and steady state models
of a transmission line equipped with a UPFC. Section III
present the design of the proposed dynamic and steady-state
inverse controllers. To demonstrate robustness and insensitivity
to measurement noise, an altered transmission line is used
in simulation, with a mid-line load distorting the power
flow equations and introducing different dynamics. Simulation
results are proposed in Section IV. Conclusions are drawn in

Fig. 3. Equivalent Circuit of UPFC system for currents

Section V.

II. M ODELING OF UPFC POWER SYSTEM

The system used to model the effect of the UPFC on the
transmission line is given in Figure 3 in one wire repre-
sentation. Sending and receiving end power sourcesVS , VR

are connected by transmission liner, L. The total current
drawn from the sending endit consists of the current flowing
through the lineis and the current exchanged with the shunt
converterip. Shunt transformer inductance and resistance are
represented byLp and rp. Series transformer inductance and
resistance are assumed negligible compared to transmission
line impedance, and are therefore not represented in Figure 3.

Power sourcesVS , VR are assumed to be infinite, meaning
that their amplitude and phase are not affected by changes
in active or reactive power demand and also that no model
dynamics originate from the power sources. This simplifies
model construction and controller design. Assuming voltage
support by the shunt converter of the UPFC to sending end
power sourceVS makes the assumption reasonable, while
simulation will show the relative indifference of controller
performance to the validity of this assumption for receiving
end power sourceVR.

The commonly accepted model used for the overhead trans-
mission lines of lengths up to50 km consists of a series
inductance and resistance [11].

Connection transformers of series and shunt converters of
the UPFC as in Figure 1 are not explicitly included in the
mathematical model used for controller design. During sim-
ulation, the transformer dynamics are incorporated however.
This simplifies model construction, and controller performance
would not differ much.

The power on which the power flow control is based will
be measured at sending end, meaning that it is formed by
the currentis and the receiving end voltageVS . Since shunt
converter currentip is used for voltage support and DC energy
storage balancing without influence on power flow, it is not
necessary to further model it.

A. Dynamic model

Using the one wire model of Figure 3, differential equations
that describe the currentis in three phases can be formu-
lated. Applying the Park transformation results in differential
equations indq space in equation 3. Applying the Laplace
transformation results in transfer functions of the system, as in
equation 4. VoltagesVd andVq are introduced in equation 2 for
notation simplicity. By substitution between the two transfer
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functions of equation 4, equation 5 is obtained, where currents
isd (s) , isq (s) are given in function of voltagesVd (s) and
Vq (s).

Vd = Vsd + Vcd − Vrd

Vq = Vsq + Vcq − Vrq
(2)

L
δ

δt

[
isd

isq

]
=

[
−r ω · L

−ω · L −r

]
·
[

isd

isq

]
+

[
Vd

Vq

]
(3)

(
s + r

L

)
· isd = ω · isq + Vd

L(
s + r

L

)
· isq = −ω · isd + Vq

L

(4)

By substitution between transfer functions in equation 4 the
transfer functions of equation 5 can be obtained.

[
isd (s)
isq (s)

]
=

1
L ·

[ (
s + r

L

)
ω

−ω
(
s + r

L

) ]
((

s + r
L

)2 + ω2
) ·

[
Vd (s)
Vq (s)

]
(5)

Active and reactive power at sending end are calculated as in
equation 6.

P (s) = Vsd (s) · isd (s) + Vsq (s) · isq (s)
Q (s) = Vsq (s) · isd (s)− Vsd (s) · isq (s)

(6)

As said before, no dynamics are related to the power sources’
voltages, so in Laplace domain, power source voltages are
constants. To simplify notation, it is assumed that by means
of a phase locked loop the Park transformation is performed
in phase with the sending end voltage, meaning thatVsq = 0.
This results in 9.

P (s) =P0 (Vs, Vr) + ∆P (Vc (s))
Q (s) =Q0 (Vs, Vr) + ∆Q (Vc (s))

(7)

P0 (Vs, Vr) =Vsd ·
((Vsd − Vrd) · r − ω · L · Vrq)

r2 + (ω · L)2

Q0 (Vs, Vr) =Vsd ·
(Vrq · r + ω · L · (Vsd − Vrd))

r2 + (ω · L)2

(8)

∆P (Vc (s)) = + Vcd (s) · Vsd · (L · s + r)
(L · s + r)2 + (ω · L)2

+ Vcq (s) · Vsd · ω · L
(L · s + r)2 + (ω · L)2

∆Q (Vc (s)) = + Vcd (s) · Vsd · ω · L
(L · s + r)2 + (ω · L)2

− Vcq (s) · Vsd · (L · s + r)
(L · s + r)2 + (ω · L)2

(9)

Both active and reactive power consist of a uncontrollable
constant part, which is determined by power source volt-
ages and line impedance, and a controllable dynamic part,
determined by converter voltage, as explicited in equation 7.
System dynamics are different for direct and cross-coupled
control betweenP,Q and VCd, VCq. The dynamic controller
to be designed will use the knowledge of these dynamics to
compensate for them.

Power
System

∆Pref (s) , ∆Qref (s)

VCd (s)

VCq (s)
P (s) , Q (s)

A(s)
Vsd

Actual power system
control variables
Calculation of

control variables

flow changes
Reference power

Fig. 4. Open Loop Control structure, whereA (s) is used to linearize control.
Actual Power system dynamics may differ from those modeled

B. Steady state model

Applying the Final Value Theorem(s → 0) to the dynamic
system equations 7, the steady state solutions for power flow
control can be found in equation 10.

P =P0 (Vs, Vr) + ∆P (Vc)
Q =Q0 (Vs, Vr) + ∆Q (Vc)

(10)

P0 (Vs, Vr) and Q0 (Vs, Vr) are the same as in equation 8.
∆P (Vc) and∆Q (Vc) can be found in equation 11

∆P (Vc) = Vcd ·
Vsd · r

r2 + (ω · L)2
+ Vcq ·

Vsd · ω · L
r2 + (ω · L)2

∆Q (Vc) = Vcd ·
Vsd · ω · L

r2 + (ω · L)2
− Vcq ·

Vsd · r
r2 + (ω · L)2

(11)

The controllable part of steady-state active and reactive
power forms a plane in direct-quadrature space ofVCd, VCq.
The steady-state based controller will use this information to
calculate the exact solution to the steady-state power flow
control problem.

III. C ONTROLLER DESIGN

The two controllers here proposed use a model inverse
to linearize and decouple control, while a small controller
realizes zero steady state error in closed loop control. Dynamic
and steady-state inverse controller differ only in the used
model inverse. Only one power system parameter necessary
for design of here proposed controllers, namely theL/r-ratio
of the transmission line. Both controllers realize a first order
system behavior when system model is valid.

A. Dynamic Inverse controller

The controllable part of active and reactive power flow was
modeled in equation 9, and is repeated in matrix form in
equation 13. For notation simplicity, matrixA (s) is introduced
in equation 12. Notice thatA (s) = det A (s) ·A (s)−1.

A (s) =
[

(L · s + r) ω · L
ω · L − (L · s + r)

]
(12)

[
∆P (s)
∆Q (s)

]
=
−Vsd ·A (s)

detA (s)
·
[

Vcd (s)
Vcq (s)

]
(13)

The inverse of the power flow model in equation 13 is given
in equation 15. This inverse could be used in an open-loop
control system to calculate control signalsVCd (s) , VCq (s)
in function of reference active and reactive power flows
∆Pref (s) ,∆Qref (s) as in equation 15. In Figure 4 a
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Fig. 5. Closed Loop Control structure, whereA (s) is used to linearize
control and integrator1/Kdyn ·s as controller. Actual Power system dynamics
may differ from those modeled

schematic of such an open loop control system is shown.
Calculating control variables by equation 15 is however not
realizable, because of uncompensated zeroes in Laplace do-
main. Also, open loop control results in high sensitivity to
modeling error.

Pref (s) =P0 (Vs, Vr) + ∆Pref (s)
Qref (s) =Q0 (Vs, Vr) + ∆Qref (s)

(14)

[
Vcd (s)
Vcq (s)

]
=

1
Vsd

·A (s) ·
[

∆Pref (s)
∆Qref (s)

]
(15)

Changing the controller topology to feedback loop control,
using the system model inverse to linearize control and adding
a linear controller, in this case an integrator, to compensate
zeroes inA (s) results in calculation of control variables
VCd, VCq as in equation 16. In Figure 5 a schematic of this
closed loop control system is shown.[

Vcd (s)
Vcq (s)

]
=

1
Kdyn · s

· A (s)
Vsd

·
[

∆Pref (s)−∆P (s)
∆Qref (s)−∆Q (s)

]
(16)

The behavior of the controlled system can be estimated by
combining the system model equation 13 and the calculation
of the control variables 16. This result in a controlled system
as in equation 17, or simplified as in equation 18.[

∆P (s)
∆Q (s)

]
=

1
Kdyn · s

·
[

∆Pref (s)−∆P (s)
∆Qref (s)−∆Q (s)

]
(17)

[
∆P (s)
∆Q (s)

]
=

1
Kdyn · s + 1

·
[

∆Pref (s)
∆Qref (s)

]
(18)

The correct interpretation of equation 18 is that if the dynamic
system model of equation 9 is a correct characterization of the
actual power system, the dynamic inverse controller would
realize a first order response to step changes in reference
power flowPref (s) , Qref (s). Cross-coupling between active
and reactive power flowP (s) , Q (s) is fully suppressed.
This assumes that the power sourcesVS , VR demonstrate no
dynamics and that control variablesVCd, VCq stay within their
range.

Using the same assumptions, the time constant of the con-
trolled system can be chosen arbitrarily by changing parameter
value 1

Kdyn
, which represents the open loop gain of the

controlled system. For smaller values ofKdyn, and thus for
smaller values of the controlled system’s time constant, an
equal step change in reference power flow will lead to bigger

control variable amplitudesVCd, VCq. Series inverter output
voltage is limited. If control variable amplitudes reach series
inverter output limits, applied control voltages are clipped.
Compensation of the cross-coupled system dynamics is no
longer possible, first order system characteristics are lost,
and cross-coupling of active and reactive power flow control
occurs.

The value of parameterKdyn can be chosen arbitrarily. In
case the actual values of line inductance and resistanceL, r
are not available, but the ratioL/r is, Kdyn can be used to
compensate with the correct gain. This ratioL/r is commonly
known for transmission lines [11].

This controller is constructed by four PI subcontrollers.
Each of the two controller outputs is formed by a two different
system dynamics. Each matrix element ofA(s)

Kdyn·s will be
formed by one PI controller. Two of these four will consist
only of an integrator.

B. Steady-State Inverse controller

The steady-state controllable component of active and reac-
tive power flow was calculated in equation 11, and is repeated
in matrix form in equation 19. For ease of notation,ω ·L has
been replaced withXL. To enhance controller performance,
the dominant time constant is incorporated in the steady state
model. In other words, equation 19 is the solution to the
steady-state power flow control problem, expanded with the
dominant dynamics of the real system. This dominant time
constant originates from the transmission line’s inductance
resistance ratio;τ = L/r.

[
∆P
∆Q

]
=

1
τ · s + 1

· Vsd

r2 + X2
L

·
[

r XL

XL −r

]
·
[

Vcd

Vcq

]
(19)

Design of the steady-state inverse controller is similar to
the dynamic inverse controller and is therefore not given in
extenso. An open loop controller using the inverse of the
system in equation 19 would have an uncompensated zero.
A closed loop controller using the system model inverse
to linearize control and a linear controller, in this case an
integrator, is formed in equation 20.

[
Vcd

Vcq

]
=

τ · s + 1
Vsd ·Kss · s

·
[

r XL

XL −r

]
·
[

∆Pref −∆P
∆Qref −∆Q

]
(20)

Similar as for the dynamic inverse controller, to estimate the
behavior of the controlled system, equations 20 and 19 are
combined, the total system reduces to 21.[

∆P
∆Q

]
=

1
Kss · s + 1

·
[

∆Pref

∆Qref

]
(21)

Correct interpretation of equation 21 is that the steady-state
inverse controller realizes a first order system response for
steady state values, and steady-state cross-coupling is sup-
pressed, but dynamic cross-coupling not. Similar remarks as
for the dynamic inverse controller aboutKss, representing the
controlled system time constant, are to be made here.Kss
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can be chosen arbitrarily; for decreasing values ofKss, the
system’s time constant will decrease, but control variables’
VCd, VCa amplitude will increase for equal step changes in
reference power flowPref , Qref . The steady-state inverse
controller depends only on the ratioL/r, where the exact
values can be compensated byKss.

This controller is constructed by two PI subcontrollers. Each
of the two controller outputs is formed by the main system
dynamic τ ·s+1

Kss·s multiplied by a sum of inputs. Therefore each
output can be formed by one PI controller, making a total of
two PI controllers..

IV. SIMULATION RESULTS

The proposed controllers are designed for a certain trans-
mission line with knownL/r-ratio. Both controllers are then
tested in two different conditions. The first condition is the
design condition. The transmission line has the sameL/r-ratio
and the switching frequency is infinite, sending and receiving
end power sources are ideal; the controllers’ theoretical perfor-
mance is shown. The second condition introduces a limitation
on switching frequency , a different transmission line with
a differentL/r-ratio, and a non-infinite receiving end power
source. Assuming voltage support by the shunt convertor of
the UPFC to the sending end power source, it is simulated as
an infinite power source. In figure 6 the non-ideal transmission
line is shown. By means of an intermediary loadL0, r0,
the receiving end power sourceVR appears as non-ideal for
transmission lineL1, r1. Both a series impedanceL2, r2 and
a shunt impedanceL0, r0 influence the apparent voltage and
angle at the receiving end side of transmission lineL1, r1. The
limited switching frequency introduces current and voltage
harmonics into the system.. The connected transformer will
act as a filter for these harmonics. This will reduce switching
noise, but also control bandwidth. A second order filter is
applied on measured power flow to visualize the filtering
function of the transformer. System and controller parameters
can be found in Appendix A. Inverter construction can be
found in [12] and will not be discussed further.

Block waves with a frequency of5 Hz are used as ac-
tive and reactive power references. To clearly visualize the
dynamic performance of the controllers, only the controlled
part of the power flow is shown, both for the reference values
∆Pref ,∆Qref as for the measured values∆Pmeas,∆Qmeas.

In Figure 7 the dynamic inverse controller is simulated in
ideal design conditions. The response of controlled power flow
to the block wave reference is indeed that of a first order
system, as expected from equation 18. Cross-coupling between
active and reactive power flow control is non-existent.

In Figure 8 the steady-state inverse controller is simulated
in ideal design conditions. In the response of the controlled
power flow to the block wave references, a resemblance to first
order step response exists. There is no cross-coupling between
active and reactive power flow for steady-state conditions, but
dynamically there is. Every change in active or reactive power
flow is answered by a smaller change in the other component.
Oscillations occur, but are damped.

In ideal conditions, both the dynamic and the steady-state

Fig. 6. Network to test controllers’ performance and robustness

Fig. 7. ∆P, ∆Q for Dynamic inverse controller in design conditions

inverse controller demonstrate sufficient control bandwidth to
follow 5 Hz.

In Figures 9 and 10 the dynamic and steady-state in-
verse controller are tested in non-ideal conditions as ex-
plained before. The steady-state responses to power flow
control references show that the controllers are both fairly
insensitive to modeling errors (L/r-ratio), measurement noise
(Pmeas, Qmeas) and control noiseVC . Cross-coupling now
appears also for the dynamic inverse controller, since it’s
compensation is no longer adapted; ratioL/r of transmission
line has changed. The filtering function of the transformer
reduces the control bandwidth. This effect is stronger for the
steady-state inverse controller than for the dynamic inverse
controller.

Even though inter-area oscillations could not occur in the
simulation model, the control bandwidth suggest that both
controllers would be able to dampen them. The oscillation
frequency of inter-area oscillations is typically0.5 − 2 Hz.
The limit of control bandwidth was not specifically measured
in these simulations, yet the responses to the5 Hz block wave
reference signal proof that it is higher than5 Hz.

V. CONCLUSION

The dynamic power flow equations of a transmission line
equipped with a UPFC have been analyzed in this paper.

Two controllers, based on the dynamic and the steady-
sate power flow equations, are proposed. Simulations in ideal
and non ideal conditions have proven the robustness of these
controllers against modeling errors, measurement and control
noise.

The controller based on the dynamic inverse demonstrates
no cross-coupling of active and reactive power except when
designedL/r-ratio differs from the actual value. The controller
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Fig. 8. ∆P, ∆Q for Steady-state inverse controller in design conditions

Fig. 9. ∆P, ∆Q for Dynamic inverse controller in test conditions, switching
frequency1 kHz

based on the steady-state inverse demonstrates cross-coupling
even in ideal conditions.

The proposed controllers’ complexity is of the order of two
or four PI controllers.

Both controllers realize a first order system behavior of
the controlled system with arbitrary time constant. Both con-
trollers’ design only depends on theL/r-ratio of the line
impedance.

Both proposed controllers allow inter-area oscillation damp-
ing.

Fig. 10. ∆P, ∆Q for Steady-state inverse controller in test conditions,
switching frequency1 kHz

APPENDIX A
SIMULATION PARAMETERS

Vs = 150√
3

kV Vr = 150√
3

kV ω = 100 · π δ = π
18rad

XL = 33 Ω R = 11 Ω K = 0.01 R0 = 1 kΩ
X1 = 11.4362 Ω R1 = 4.3429 Ω
X2 = 22.1515 Ω R2 = 6.6217 Ω
Vclim = 0.1 · Vs

Inverter capacitor voltage is limited to4 kV and a connection
transformer with ratio15 was used. Transformer impedance
assumed negligible in comparison to line impedance. Switch-
ing frequency of converters is limited to 1 kHz.

A second order filter is used with200 Hz cut off frequency.
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