
 

Pareto Analysis of Controller Design Methodologies 
for Integrator plus Dead Time Processes   

 
Abstract—Controller design methodologies are commonly 

compared by publishing examples of individual controllers that 
were designed using competing approaches. In this paper, Pareto 
analysis is used to compare three methods of designing controllers 
for integrating second order plus dead time processes - a problem 
that has been discussed in the literature. The analysis shows that, 
in the example chosen, superior performance can be attained by 
adjusting the approach to tuning controllers. Solutions found by 
Pareto analysis that improve performance may be directly 
implemented. This finding demonstrates the usefulness of Pareto 
analysis in Control engineering, as either a design or research 
technique. 

 
Index Terms—Disturbance rejection, Integrating processes, 

Pareto-frontier Differential Evolution, Pareto front, Smith 
Predictor 

I. INTRODUCTION 
The Smith Predictor has recently been extended to processes 

that include an integral or unstable pole. A standard Smith 
Predictor could not be applied because it cannot reject an input 
disturbance for these processes.  

Mataušek and Mici� [1,2] showed that adding an additional 
PD controller, called the disturbance modifier in this paper, 
allows the standard Smith Predictor to reject the input 
disturbance. This controller functions by modifying the 
disturbance rejection loop only, leaving the set point tracking 
behavior unchanged in the nominal case where the model is an 
exact match of the process. Majhi and Atherton [3] extended 
this controller to integrating and unstable processes by 
including a second PD controller to prestabilize the model, and 
feeding the output of this controller to the process as well. This 
effectively prestabilizes the process using the modeled 
response of the process without dead-time. These adaptations 
allow a wide range of processes to be controlled using a Smith 
predictor structure.  

Kaya [4] provides an alternative means of specifying set 
point tracking behavior in terms of a settling time, Ts and 
damping factor, �. He also provides another set of tuning laws 
for the disturbance modifier when the process is an integral 
second order plus dead time (ISOPDT) process that he claims 
to be superior to the tuning laws provided in [3]. 

The author has shown [7] that the disturbance rejection 
behavior of these controllers is affected by set point tracking 
behavior, even for the nominal case.  

Aström et al. [5] had published an earlier work dealing only 
with integrator plus dead time processes. This work fully 
decoupled the set point response of the system from the 
disturbance rejection behavior by removing feedback from the 
output of the process to the set point tracking controller. He 

adds a single transfer function which consists of both dead time 
elements and polynomial elements that functions as a 
disturbance estimator.  

When Liu et al. [6] investigated this field, they stated that 
[3] suffered from the coupling described above. In order to 
avoid this problem they also chose to remove the feedback 
from the output of the process to the set point tracking 
controller, resulting in a structure that may be viewed as an 
extension of [5] to ISOPDT processes and also to processes 
that include an unstable pole. The disturbance estimators 
proposed in [6] are not directly realizable, instead the authors 
proposed using a Maclaurin expansion (a Taylor expansion 
about the point s = 0) to approximate the function as a PID 
controller. 

II. CONTEXT AND AIMS OF THIS WORK 
References [3], [4], and [6] offer different solutions for the 

same set of processes, and clearly it is necessary for a designer 
to understand the benefits and disadvantages of each of these 
three options. In order to prove the superiority of the new 
controller over previous controllers, earlier papers showed 
simulations of various controllers for problems tackled by 
other authors. These simulations focused on set point tracking 
and input disturbance rejection, neglecting considerations of 
output disturbance and control effort. This process has lead to 
[3], [4], and [6] which are competitive papers, that all offer set 
point tracking with no overshoot in the nominal case and a 
smooth damped response for input disturbance rejection.  

The fact that these controllers achieve reliable, acceptable 
set point tracking profiles allows the author to extend the 
comparison of these methods to consider output disturbance 
rejection and control effort. In this paper a single process is 
selected and the complete sets of potential controllers produced 
by [3], [4], and [6] are compared directly. These sets are then 
compared to controllers that have been optimized using Pareto-
frontier Differential Evolution (PDE) [8]. By comparing the 
full set of potential controllers a more accurate understanding 
of the strengths of each method can be obtained. 

III. PROBLEM 
In this work the Pareto front for the solutions offered by [3], 

[4], and [6] to example 3 in [3] is studied. The model used is: 
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This model is an approximation of a high-order process with 
dead time but it will be adopted as the actual process in this 
paper, omitting the modeling step. Robustness will be 



 

controlled for as described in section VI part C. 

IV. METHODS INVESTIGATED 
The Majhi and the Kaya controllers can be represented in 

the same block diagram, because the methods vary only in the 
tuning of the controllers Gc, Gc1 and Gc2, by the Majhi naming 
convention. Fig. 1 below gives a block diagram showing both 
the Majhi and Kaya naming conventions.   

 

 
Fig.  1. Block diagram of Majhi and Kaya controllers showing naming 
convention from [3] top line and [4] bottom line. 

 

A. The Majhi controller 
Majhi and Atherton [3] specify their controllers as: 

Gc=Kp(Tis+1)/(Tis), Gc1=Kf(Tfs+1), Gc2=Kd(Tds+1)/(Td/Ns+1) 
for ISOPDT systems (where Td/N <<1 and can therefore be 
neglected in the analysis). The time constants are set to be 
equal to the process time constant, that is, Ti = Tf = Td = T1. 
The gains Kp and Kf are chosen to give the desired setpoint 
response, and the delay free portion of this desired setpoint 
response is given as Yr

’ = 1/(�s+1)2. This gives kKp = T1/�
2 and 

kKf = 2/� with � as a tuning parameter that Majhi and Atherton 
suggest is chosen as � � T1. The gain Kd is set by the equation: 
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where �m is a tuning parameter, that they suggest to be �m = 
60°.  

B. The Kaya controller 
The controllers used by Kaya [4] are identical in form to the 

controllers in [3]. However Kaya defines a new variable, Ts, 
the closed loop settling time for the under-damped system. He 
chose the relationship �o = 2.5/�Ts. After choosing a value for 
� and Ts, the natural frequency of oscillation �o is fully 
specified. Then Kp = T1 �o

2/k, Kf = 2 � �o/k and Tf = Ti = T1 as 
before. This fully specifies the set-point tracking of the Kaya 
controller as Yr

’ = �o
2/(s2+2 � �os+ �o

2). Comparing the set-
point tracking behavior of [3] to that of [4] it is can be shown 
that if � = 1 then 2� = 2 � /�o and Ts = 2.5�. A damping factor 

of � = 1 is often desirable for a system’s response, and this is 
either implicitly or explicitly assumed in all examples in [4].  
 

For the disturbance rejection controller, Kaya [4] adopts the 
method described in [2] and updates it for ISOPDT systems by 
defining an equivalent time constant Lm=�m+T1 (using notation 
from Eq.1). Then Td=�Lm and  
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Kaya follows the suggestion in [2] of setting the tuning 

parameters to �m = 64° and � = 0.4 in the equation above.  

C. Liu controller 
Liu et al. [6] recently proposed a new controller that requires 

a different block diagram representation, as shown in Fig.2. 

     
Fig.  2. Block diagram of Liu controller redrawn from [6]. 

 
For a ISOPDT process, the setpoint tracking controllers are 

specified as: K = kc = 1, and  
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where �c is a tuning parameter equivalent to � in [3]. The 
disturbance estimator is defined as:  
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where a1=3�f+�, �f a tuning parameter to tradeoff performance 
with robustness of the disturbance estimator. 

This disturbance estimator is not realizable in this form, and 
a PID approximation to this desired estimator must be used: 
F(s) = kf +1/(TIs)+TDs. Liu [6] suggests that a low pass filter 
defined as 1/( �fTDs+1), with 0.01 < �f < 0.1, should be used to 
make F(s) realizable. 

V. SIMULATION SETUP 

A. Input parameters 
Controller performance was simulated using software based 

on the 4th order Runge Kutta (RK4) algorithm. Setpoint 
tracking was initially ignored, since this problem has an 
adequate solution in all the methods. Thus the signal r is set to 



 

zero in Fig. 1 and 2 above. From Fig. 2 it can be seen that if r = 
0 the output from Gc, K and the model will always remain zero, 
even if the process varies or disturbances enter the loop. 
Therefore only the controller F and the process need to be 
simulated. For the Liu controller the input parameters, x, were 
specified as x = [kf TI TD �f]. The Majhi and Kaya controllers 
were simulated using code that implemented the control loop in 
Fig. 1. The code written to perform these simulations was 
tested by reproducing diagrams published in [3] and [4]. For 
these controllers x = [Kd Td (1/N) Ts].  

B. Output (cost function) 
All simulations for the data sets were 120s long, and a time 

step of dt = 6.35ms was used for the RK4 algorithm. Three 
input signals were simulated for each controller: an input 
disturbance (v) step of 0.1 units (as used in [3] and [6]), an 
output disturbance (d) step of 0.2 units and a noise signal (n) 
with standard deviation of 0.1.  

For each simulation two values were monitored, the error in 
the output value (e = -y since r = 0) and the input value, u, to 
the process after the input disturbance has entered the loop. 
Measuring the u value after the simulated input disturbance, v, 
has entered, ensures that the final value of u is zero even for an 
input disturbance simulation. This is important because integral 
time squared error (ITSE) measures were applied to the first 
four costs. If the same steady state offset (equal to the input 
disturbance) remained in the measured u value, this constant 
value would have a larger contribution to the integral than the 
dynamic response.  

For cost functions associated with the noise input the 
standard deviation of the monitored signals was found using 
recursive equations that are given in [9].The output, f, from a 
specific x was defined to have the form f = [Uv Ev Ud Ed Un En], 
where Uv refers to the cost evaluated on signal u when input v 
is simulated.      

VI. DESCRIPTION OF  DATA SETS 
A list of the datasets prepared for this paper is given in 

Table I. Each dataset was constructed using the nominal model 
as the process, and a second set of variation datasets were 
made using a positive 10% variation in dead time. 

TABLE I 
NAMING OF DATA SETS AND NO. OF ELEMENTS 

Dataset 1 2 3 4 5 6 

Name TsPDE mkPDE LiuPDE MajhiBase KayaBase LiuBase 

Nominal 2000 295 1262 1457 1461 2267 

Variation 2000 228 1127 1457 1461 2267 

 

A. Optimized Data Sets 
Datasets 1-3 were created using a PDE optimizer written in 

Matlab by Prof Greene from pseudo code in [8] and adapted to 
interface with the simulation software by the author.  

Dataset 1 was created by allowing the optimizer to tune the 

inputs Kd, Td and Ts to obtain Pareto nondominated solutions 
for the Majhi / Kaya simulation code. The first four costs were 
considered during optimization. The filter term (1/N) was kept 
fixed at 0.01 during the optimization. 1000 nondominated 
solutions were found; each of these solutions was re-evaluated 
with (1/N) = 0.1 to form the full set of 2000 elements.  

For datasets 2 and 3 the optimizer ran until 5000 
nondominated solutions were found for the nominal problem in 
each set. It was noted that a number of these nondominated 
solutions rejected noise well but performed poorly on the other 
costs. These datasets were tested for dominance again using 
only the first four costs, and the nondominated solutions were 
retained.  

For dataset 2 the optimizer was allowed to tune Kd, Td, and 
1/N in the Majhi / Kaya simulation. The setpoint controllers 
were restricted to those published in [3] for this problem, that 
is � = 3.4945, which has an equivalent settling time of Ts = 
8.74. This gives Kp=0.2862, Ti=3.4945, Kf=0.5723 and 
Tf=3.4945 (from [3]). 

Dataset 3 is based on [6] and allows all the parameters, kf, 
TI, TD, and �f , to be tuned. Since [6] decouples the setpoint 
tracking from the disturbance rejection, the costs found for this 
dataset can be obtained for any desired settling time. 

Thus datasets 1-3 consist of points that describe the best 
performance available when different restrictions are placed on 
the controllers. Dataset 3 requires a PID disturbance estimator, 
dataset 2 demands a settling time of 8.74s (by Kaya’s 
definition) and dataset 1 only requires that the shape of the 
settling profile is the same as [3].   

B. Base Data Sets 
The base datasets (4-6) are intended to cover every 

controller that could be designed by a given method. This is 
done by stepping the tuning parameters available in each 
method from the smallest expected value to the largest 
expected value in a regular way. For each value of the tuning 
parameter a range of nondominant filters are tested in order to 
control for the effect of filter terms.  

For datasets 4 and 5 the only parameter which is varied is Ts 

since [3] and [4] suggest that the tuning proposed for Kd and Td 
is optimal and that the parameters available for tuning the 
disturbance modifier should be left unaltered. Therefore, the 
disturbance modifier was fixed at Kd=0.0797 and Td=3.4945 
for the Majhi method (dataset 4) and at Kd=0.0719 and 
Td=4.0246 for the Kaya method (dataset 5). The settling time 
Ts was varied from 0.1 to 11.98 in steps of 0.03. Each settling 
time was tested for filters of 0.01, 0.03, 0.06 and 0.1. At values 
of Ts < 2 the larger filter terms resulted in numerical overflow 
and were automatically removed during simulation, dataset 4 
and 5 consist of only those points which did not cause 
overflow. This suggests that for small values of Ts more 
derivative action is required to reject a disturbance. The effect 
of varying the tuning for Kd and Td could be tested in a similar 
manner to verify the claims in [3] and [4].  



 

Dataset 6 was created by varying �f from 0.2 to 18.2 in steps 
of 0.03. This covers the range that is suggested to be good by 
[4] (that is 0.5�<�f< 3.0�). Filters of 0.01, 0.03, 0.06, 0.1, 0.17, 
and 0.22 were tested. This range of filters covers the range 
suggested in [4] of 0.01~0.1 and includes two additional 
values. After creating this dataset, Pareto dominated solutions 
were removed leaving 2267 solutions for values of �f between 
3.11 and 17.48. 

C. Robustness Test Sets 
A good controller must be robust to changes in the process. 

In [1]-[6] robustness of a controller was demonstrated by 
showing plots of its performance under a 10% perturbation of 
the dead time in either a positive sense only or a positive and 
negative sense. It can be seen from these papers that the peak 
error due to a disturbance is worst for a positive perturbation of 
the dead time. The peak error actually improves for a -10% 
perturbation in the published figures. Therefore to test 
robustness in this work the datasets’ costs were re-evaluated 
for the case where the process dead time is increased by 10%, 
to 7.2239s, whilst the model dead time remains at 6.5672s. For 
datasets 2 and 3 the full 5000 element datasets were re-
evaluated and the process of selecting nondominated solutions 
repeated. This re-evaluation explains the variation in the 
number of elements in the nominal set and the 10% variation 
set.   

VII. REDUCTION OF DIMENSION 
The datasets produced for this work have six dimensional 

cost sets; each element has the form f = [Uv Ev Ud Ed Un En]. 
Data in high dimensions can be analyzed by statistical 
methods. However these methods provide limited insight into 
the problem. Comparisons of the input parameters which 
produced nondominated results can be made if the input 
parameters refer to a single method. However, competing 
methods cannot be compared. Studying costs 1-3 allows the 
datasets to be visualized directly in three dimensions. This 
dimensional reduction will be justified by considering the 
contribution of each omitted cost in turn.  

Noise signals are included for generality in the datasets and 
are available for future work. However, these signals (hence 
costs 5 and 6) will not be studied in detail in this paper. 
Designing for disturbance rejection first and then improving 
noise rejection as a subsequent step is common practice in 
many design procedures. In this case En is small since the 
process studied has an integral characteristic. The process acts 
as an effective low pass filter, therefore En is likely to be 
acceptable in any design.  The cost Un is closely associated 
with Ud (they share a common transfer function), therefore 
optimizing the trade offs for Ud may yield an acceptable 
performance for Un. If Un is not acceptable in a design, adding 
suitable low pass filters can improve it, although a degradation 
in performance in other costs may be encountered. The fourth 
cost, Ed, shows strong correlation with Uv in all the datasets. 

Thus Ed can be neglected if Uv is studied.    

VIII. THREE DIMENSIONAL VISUALIZATION OF DATASETS 
The datasets prepared for this work cover a general set of 

disturbance inputs for three separate methods and three 
optimizations of these methods. The datasets provide a large 
amount of information, from which a wide range of 
conclusions can be drawn. Visualizations presented in this 
section are chosen to best show the effect of restricting Ts on 
the attainable disturbance rejection.  

The images are divided into three sections:  
Section A gives two orthographic views of the data points in 

each dataset. These images are presented first to familiarize the 
reader with the general shape of the datasets.  

Section B shows four sectional views of the datasets. These 
plots will be used to discuss the effect of varying Ts. The 
author suggests that the pictures in section A are then reviewed 
as the sectional views will help the reader visualize these 
images as three dimensional surfaces. 

Section C consists of a single orthographic view of the 
variation datasets. This picture is included to show that the 
overall shape of the Pareto front and the relationship between 
datasets is largely unchanged by an increase in dead time.   

A. Orthographic views of nominal datasets 
In Fig. 3 datasets 2, 3 and 6 are on the Pareto front for very 

large values of Ev but turn off the Pareto front as Ev decreases. 
These datasets in fact turn out of the page at about 45° for 
larger values of Ud, this can be verified in Fig. 4 and the 
sectional views.   

Datasets 4 and 5 (double light and dark grey line labeled in 
Fig. 4) are on the Pareto front for small values of Ev, but then 
turn away from the Pareto front.  

Dataset 1 dominates datasets 2, 3 and 6, as Fig. 4 shows. 
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Fig.  3. Orthographic view of datasets 1-6 showing Ud – Ev 
trade off.  Uv axis out of page. 



 

 
In Fig. 4 datasets 3 appears to be competitive with dataset 2, 

however Fig. 3 and the sectional views show that set 2 remains 
slightly dominant.  

Dataset 2 was restricted to a value of Ts = 8.74s during the 
optimization. The fact that it is dominated by dataset 1 shows 
that the value of Ts selected by Majhi and Atherton had a 
significant effect on the achievable disturbance rejection. Since 
dataset 3 consists of optimized PID controllers and hence 
represents the best performance attainable from a PID 
controller, it can be seen that PID control is not adequate for 
this problem.  

 

Fig.  4. Orthographic view of datasets 1-6 showing Ev – Uv 
trade off. Ud axis out of page. Sectional plots given for this 
view. 

B. Section views of Fig. 4 
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Fig.  5. Sectional view of Fig. 4. Datasets 4, 5 Ts = 1.0-1.5, 
Ud = 0.20-0.44 for remaining sets. 
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Fig.  6. Sectional view of Fig. 4. Datasets 4, 5 Ts = 2.5-3.0, 
Ud=0.058-0.077 for remaining sets. 

Fig. 5 – Fig. 7 were created by plotting points in datasets 4 
and 5 within a range of values of Ts. Data points in other sets 
that lie in the same range of values of Ud as the points in 
dataset 5 were then added.  

Dataset 1 defines a Pareto front for this problem. Datasets 4 
and 5 are on or close to the Pareto front for a range of values of 
Ts however at the value of Ts selected for publication in [3] 
they no longer lie on the Pareto front, and datasets 3 and 6 are 
competitive with them. Since these controllers lie in the same 
region for this value of Ts claims of improving one element of 
the cost function are valid, but do not show the trade off with 
another cost. They also do not show the large improvement that 
can be attained for the methods published in [3] and [4] by 
reducing Ts.  
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Fig.  7.  Sectional view of Fig. 4. Datasets 4, 5 Ts = 8.0-9.0, 
Ud = 0.048-0.054 for remaining sets. 



 

The method described in [6] is an optimal tuning of a PID 
controller for a range of values of Ud, but is not optimal for 
small values of Ud. This can be seen from Fig. 8  
 

 

Fig.  8. Sectional view of Fig. 4. Ud = 0.025-0.030, datasets 
4, 5 not visible in section.  

C. Orthographic view of variation datasets 
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Fig.  9. Orthographic view of datasets 1-6 showing similar 
trends to Fig. 4 for the variation sets. Note Uv axis shifted 
by 0.5 units.   

Comparing Fig. 9 to Fig. 4 shows that the relationship 
between the datasets is largely unchanged for a 10% positive 
variation in the process. 

IX. SETPOINT RESPONSE 
Setpoint response has not been discussed, but it is obviously 

affected by tuning Ts for [3] and [4]. The author has shown [7] 
that the robustness of the setpoint response is negatively 
affected by decreasing Ts. A designer may correct for setpoint 
response by adding a low pass prefilter to the setpoint, this 

would allow a small value to be selected for Ts whilst 
maintaining the desired setpoint response. Alternatively, the 
disturbance estimator used in [3] and [4] may be migrated to 
the structure described in [6]. This modified controller would 
require two models of the process and other controllers, but 
could give superior disturbance rejection and accurate setpoint 
response. 

X. CONCLUSION 
In this work it has been shown that Pareto analysis is useful 

for analyzing controller design methodologies. It allows all 
significant tradeoffs to be addressed simultaneously. In this 
case the Pareto front was found to lie in three dimensional 
space. Visualizations of three dimensional data can be made 
using Matlab, however the key aspects of these moveable plots 
are difficult to capture in print. If the Pareto front lies in a 
higher dimension further work is required to analyze it.   

The analysis has shown that current methods are being 
compared at a very restricted point, which does not lie on the 
Pareto front for disturbance rejection. PID controllers are not 
sufficient to obtain the best disturbance rejections possible for 
this example. For certain controllers the setpoint response time 
must be reduced to reach the Pareto front.  

Using modern optimization techniques it is possible to tune a 
controller directly. However, these methods still require an 
existing controller strategy to optimize. Attempts by the author 
to tune generalized controllers to the integrating second order 
plus dead time process have been found to be computationally 
intensive and to yield poor results. 
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