
A New Approach to Elliptic Curve Cryptography: an
RNS Architecture

Abstract—An Elliptic Curve Point Multiplier (ECPM) is the
main part of all Elliptic Curve Cryptography (ECC) systems and
its performance is decisive for the performance of the overall
cryptosystem. A VLSI Residue Number System (RNS)
architecture of an ECPM is presented in this paper. In the
proposed approach, the necessary mathematical conditions that
need to be satisfied, in order to replace typical finite field circuits
with RNS ones, are investigated. It is shown that such an
application is feasible and that it leads to a significant
improvement in the execution time of a scalar point
multiplication.

I. INTRODUCTION
ECC was first proposed in 1985 independently by N.

Koblitz [4] and V. Miller [5] and is gradually gathering both
scientific and industry interest. The main reason for this is that,
key bit lengths in ECC are much smaller than other public-key
cryptosystems. Consequently, less hardware is required to
implement such public-key cryptosystems. The result is higher
speed, lower power consumption and smaller certificates,
which is especially useful in constrained environments such as
PDAs, smart cards, etc. [6].

However, the finite field operations that need to be
implemented in ECC are time consuming and the operands are
large integers. Thus, since ECC is based on finite field
arithmetic, there is a need for fast and efficient finite field
implementations.

RNS has been widely studied and used in many
applications, from digital signal processing to multiple
precision arithmetic. The main advantages of RNS are the
decomposition of a given range into parallel paths of smaller
dynamic ranges, carry-free operations among paths employing
different moduli, reduced complexity of the arithmetic units
when large word lengths are needed and reduced power
consumption. On the other hand, RNS implementations require
the extra cost of an input converter to translate numbers from
the standard binary format into residues and an output
converter to implement the translation from RNS to the binary
representation [6].

The performance of the converters is possible to have a
major impact on the complexity, latency and power
consumption. Nevertheless, in the case of data intensive
computations (e.g. filters or filter banks) these disadvantages
can be easily counterbalanced by the savings in the internal
RNS computations. For these reasons, recently, the RNS
arithmetic has been proposed for use in public-key
cryptography [12], which requires multiplications of very large
numbers, and in transmission systems based on Code Division
Multiple Access (CDMA) [6].

The contribution of this paper is, to the authors’
knowledge, the first documented ECPM architecture, which
exploits the RNS representation.

In the remainder of this article, the basic mathematics of
RNS and a specific version of RNS useful for our purposes,
called extended RNS, are described in section II. In section III
the main concepts of elliptic curve arithmetic are briefly
analyzed. In section IV a methodology to synthesize RNS and
finite field operations is presented. In section IV the hardware
architecture of the proposed ECPM is described. Finally, in
section V, the main results derived from the synthesis tools, as
well as comparisons with other published implementations are
presented. Furthermore, the impact of the binary-to-residue
and residue-to-binary conversion on the performance of the
ECPM is investigated. It is shown that, because of the data
intensive character of Elliptic Curve (EC) arithmetic, the cost
of the conversions is negligible.

II. THE RESIDUE NUMBER SYSTEM

A. Mathematical Background
RNS is defined by a set of relative prime integers

(p1, p2, … , pn) with dynamic range P = ∏ pi. Any integer
x œ {0, 1, … , P – 1} has a unique representation given by

()
1 2

, , ...,
n

RNS

p p p
x x x x⎯⎯→

where ‚xÚpi = x mod pi. Assuming two integers a, b in RNS
format i.e. a = (a1, a2, … , an) and b = (b1, b2, … , bn) then one
can perform the operations ≈ = (+, -, *) in parallel by

()
1 2

1 1 2 2, , ...,
n

n np p p
a b a b a b a b⊗ = ⊗ ⊗ ⊗ .

However, if a≈b¥P, a reduction modulo is performed in
the result. Hence, to achieve an exact result, overflow must be
prevented [3].

B. The Extended RNS
One way to perform residue-to-two’s-complement

conversion is through the Chinese Remainder Theorem (CRT).
Let Pi = P/pi and the notation Pi-1 will be used for the
multiplicative inverse of Pi according to modulus pi. It can be
proved that the exact value x can be expressed by

1

1
i

n

i i i xp
i

x P P x r P−

=

= −∑ (1)

where rx is an integer and rx § n – 1 [2]. This bound on the
value of rx can be used for choosing an adequate redundant
modulus. Let pr be a redundant modulus, such that

 1rp n≥ + and gcd(,) 1rP p = (2)

and xr be the corresponding residue. This redundant residue is
available from start to finish along with the residues
x1, x2, … , xn. Reducing (1) to the redundant residue we get

 1

1
ri

r

n

r i i i x pp
p

x P P x r P−= −∑ . (3)

We arrange it to

 1 1

1
r i

r

n

x i i i rp p
p

r P P P x x− −= −∑ . (4)

Since rx is strictly bound from above by n (< pr), it follows that
rx = ‚rxÚpr can be calculated from (4). All operations performed
for moduli p1, p2, … , pn are performed as well on pr, so our
number will be represented as (x1, x2, … , xn, xr), which forms
the extended RNS representation. It has been proved that any
number x∈ [-P+1,Ω, P+1] represented by (x1, x2, … , xn, xr)
will be correctly calculated by formulas (1) and (4) [2]. The
fact that negative numbers can now be calculated correctly by
equations (1) and (4) will later prove to be extremely useful in
order to embed RNS in the EC arithmetic.

III. ELLIPTIC CURVE ARITHMETIC

A. Elliptic Curves over Fp

In the remainder of this article we will only focus on
elliptic curves defined over Fp, where p is a “large” prime
number. Field elements will be naturally represented as
integers in the range 0, 1,Ω, p-1, with the usual arithmetic
modulo-p. An elliptic curve over Fp is defined by an equation
of the form

 2 3y x ax b= + + (5)

where a, b œ Fp and 4a3 + 27b2 ∫ 0 (mod p) together with a

special point O, called the point at infinity. The set E(Fp)

consists of all points (x, y), x, y œ Fp, which satisfy equation

(5), together with O. The group law defines the addition of two
points on an elliptic curve. Together with this addition
operation, the set of points E(Fp) forms a group, with

O serving as its identity element. It is this group that is used in

the construction of elliptic curve cryptosystems. The special
case of adding a point to itself is called a point doubling.

It has been proved that in affine representation one needs to
compute the inverse of an element in Fp to perform an addition
or a doubling of a point [1]. Inversion can be very time
consuming and thus, to avoid inversions, projective
coordinates can be used. Given a point P = (x, y) in affine
coordinates, the projective coordinates P = (X, Y, Z) are given
by

 ; ; 1X x Y y Z= = =�� ��� (6)

There are various projective representations that lead to
more efficient implementations than using the one in (6).
Jacobian coordinates is an example of such a representation,
employed in the implementation presented here. In this case,
the affine representation is given by

2 3

X Y
x y

Z Z
= = . (7)

B. The Group Law in Jacobian Representation
Using the representation in (6) and (7), (5) becomes

 () 2 3 4 6:pE Y X aXZ bZ= + +F . (8)

Then, addition and doubling of points can be defined as
follows. Let P0 = (X0, Y0, Z0), P1 = (X1, Y1, Z1) œ E. The sum
P2 = (X2, Y2, Z2) = P0 + P1 œ E can be computed as follows. If
P0 = P1, then

2

2

2 1 2 2

2 1 1

2
2 ()

2

X M S
Y M S X T
Z Y Z

= −
= = = − −

=

⎧⎪
⎨
⎪⎩

P P (9)

where 2 4

1 13M X aZ= + , 2

1 14S X Y= , and 4

18T Y= . On the
other hand, if P0 ∫ P1,

2 2

2
3

2 0 1 2

2 0 1

2
X R TW
Y VR MW

Z Z Z W

= −
= + = = −

=

⎧⎪
⎨
⎪⎩

P P P (10)

2 2

0 1 1 0W X Z X Z= − , 3 3

0 1 1 0R Y Z Y Z= − , 2 2

0 1 1 0T X Z X Z= + ,
3 3

0 1 1 0M Y Z Y Z= + and 2

22V TW X= − .

Based on (9) and (10), one can implement point doubling
and point addition, respectively. With these algorithms
available, the next step is to implement the scalar point
multiplication, which is the most important operation in ECC.
For our purposes, the binary method algorithm [1] was chosen
because it is easy to implement and minimizes memory
requirements. The binary method algorithm is based on the
binary expansion of k, as follows:

Algorithm 1 Binary method for EC point multiplication

INPUT: A point P, an l-bit integer k, k = ∑ kj2j, kj œ {0, 1}, j = 0, 1, …, l – 1

OUTPUT: Q = [k] P.
1. Q ô O
2. for 1j l= − to 0 by –1 do:
3. Q ô [2]Q
4. if kj = 1 then Q ô Q + P
5. return Q

The binary method requires l–1 point doublings and W–1

point additions, where l is the length and W the Hamming
weight of the binary expansion of k [1]. For any positive

integer k, the notation [k] is used to denote the multiplication-
by-k map from the curve to itself. The notation [k] is extended
to k § 0 by defining [0]P = O, and [–k]P = –([k]P) [1].

IV. EMBEDDING RNS IN THE POINT ADDITION AND
DOUBLING ALGORITHMS

All operations in equations (9) and (10) are modulo-p,
where p is the characteristic of the field. Thus, if we want to
implement a cryptographic scheme with an n–bit key, all
operands and finite field circuitry will be n–bit long.
Consequently, the main idea proposed here is to replace finite
field circuits with RNS ones. In that way, the benefits of using
smaller RNS operands are exploited to implement a faster
ECPM architecture.

In order for this replacement to be valid, we need to choose
an adequate RNS dynamic range. First of all, we assume that
equations (9) and (10) are computed over the integers, i.e.,
without the modulo-p reduction. Let m be the absolute
maximum value of these computations. In order for the RNS
implementation to be valid, we need to choose an RNS
dynamic range P ¥ m. Then, we can perform the point
multiplication using RNS circuits and data in RNS format. For
example, if the field characteristic p is 160-bit long, then the
equivalent RNS range needs to be 660-bit. In the proposed
implementation the moduli set chosen, consists of twenty
moduli, 33-bit long each. It is interesting though that for a field
characteristic 192-bit long, each moduli needs to be just 42-bit
long. If a point multiplication result needs to be transformed
back to a finite field element, we only need to implement
equation (1) to get a valid number over the integers and then
perform a final modulo-p reduction to the result to get the
finite field element. Note that the use of extended RNS allows
the correct computation of the EC algorithms for point addition
and doubling, by providing an adequate range, in case a
negative result occurs.

V. THE HARDWARE IMPLEMENTATION
The first step to the proposed architecture was to design

modulo-p circuits in order to synthesize RNS adders,
subtracters, and multipliers. Modulo adders and subtracters are
typical architectures i.e., an addition or a subtraction is
performed and then a reduction-by-p stage follows. The
implemented algorithms for modular addition and subtraction
are as follows [9].

Algorithm 2 Modular addition and subtraction

Require: p, 0 ≤ X < p, 0 ≤ Y < p Require: p, 0 ≤ X < p, 0 ≤ Y < p
Ensure: Z = A + B mod p Ensure: Z = A - B mod p
1: Z' = X + Y 1: Z' = X - Y
2: Z" = Z' - p 2: Z" = Z' + p
3: if Z" < 0 then 3: if Z' < 0 then
4: Z = Z' 4: Z = Z"
5: else 5: else
6: Z = Z" 6: Z = Z'
7: end if 7: end if

Modulo multiplication is implemented using Horner’s rule

shown in (11) [7]

()()()1 2 0... 2 2 ... 2r rp p
XY x Y x Y x Y

− −
= ⋅ + ⋅ + ⋅ + (11)

where r is the number of digits of X. The algorithm for
modular multiplication has as follows.

Algorithm 3 Modular multiplication based on Horner’s rule

Require: 0 ≤ X, Y œ N and r, p œ N*
Ensure: Z[0] = ‚XYÚp
1: Z[r] = ô 0;
2: for i = 0 to r do
3: Z[r - i] ô ‚2Z[r - i + 1] + xr - iYÚp
4: end for

The designed circuits are shown in Fig. 1, 2, and 3.

Figure 1. The modulo–p adder.

Figure 2. The modulo–p subtracter.

Figure 3. The modulo–p multiplier.

The RNS circuits are a parallel combination of the circuits
of Fig.1, 2, 3. Their architecture is shown in Fig.4, where each
block represents one of the circuits of Fig.1, 2, 3.

Figure 4. Architecture of the RNS structures.

With the use of the RNS structures presented, the point
addition and doubling algorithms can now be implemented.
These structures use 1 RNS adder, 1 RNS subtracter, 1 RNS
multiplier, multiplexers and decoders. A multiplexer is placed
at the inputs of each RNS structure, in order to choose the
operands that will be processed. Correspondingly, a decoder is
placed at the output of each RNS structure, which drives the
result to an appropriate register. The multiplexers’ and
decoders’ control signals are derived from a counter.

The proposed Elliptic Curve Point Adder (ECA) and
Elliptic Curve Point “Doubler” (ECD) architectures are shown
in Fig.5 and 6. The notation “to_X” means that data are driven
to register “X” whereas “from_X” means that data are read
from register “X”. Note that the registers shown on Fig.5, 6 are
RNS registers i.e., each block stores data in RNS format. For a
point addition, 17 RNS multiplications are needed whereas for
a point doubling, 15 RNS multiplications are performed.

Figure 5. The proposed architecture of the ECA.

Figure 6. The proposed architecture of the ECD.

By exploiting the binary method we present the proposed
architecture of the ECPM in Fig.7.

Figure 7. The proposed architecture of the ECPM.

In each clock cycle a point addition or a point doubling is
performed, according to the bit value of k. The shift register
also generates the control signal of the input multiplexer.
When a complete shift of k has been detected, the multiplexer
drives point O at the input of the ECD. This operation refers to
the first line of the binary method algorithm and is necessary
for the initialization of the point multiplication procedure.

VI. PERFORMANCE AND COMPARISONS
ECPM was synthesized in a Xilinx Virtex 2–Pro

(XCVP125, FF1696) FPGA. Table 1 summarizes the main
results derived from synthesis as well as comparisons with a
well–known design in Fp.

TABLE I. DELAY TIMES OF THE MAIN OPERATIONS IN ECPM

Delay (ms)
Operation

Fp [9] Fp with RNS
representation

Multiplication 0.0050 0.00055

EC addition 0.0740 0.0110

EC doubling 0.070 0.0096
General Point
Multiplication 14.140 2.416

The above table’s analysis shows the efficiency of the
proposed implementation. An approximate 82% improvement
in the execution time of a scalar point multiplication was
achieved. Note that the implemented ECPM utilizes a 160-bit
integer k, i.e., the underlying field characteristic p, is 160-bit
long and the selected RNS base consists of twenty relative
prime moduli, 33-bit long each. The implementation in [9] also
features a 160-bit k and was synthesized in a Xilinx Virtex-E
(V1000E-BG-560-8) FPGA. Furthermore, the reported
frequency was 75 MHz, whereas in [9] the maximum clock
frequency was 91.308 MHz. The only existing previous work
done on a FPGA, apart from [9], is from Orlando and Paar
[10]. They reported that their processor would compute a point
multiplication in about 3msec but only if were possible to
extract 100% throughput from their multiplier. The reported
frequency in [10] was 40 MHz.

As far as the area is concerned, the proposed
implementation utilizes approximately 50,000 4 input LUTs,
whereas in [9] and [10] only 11,227 LUTs and 11,416 LUTs
are used, respectively. This can be explained by the fact that,
the RNS range that needs to be chosen is much larger than the
field characteristic p, as proved in section IV. This is the main
reason why twenty moduli were chosen to construct the
adequate RNS range mentioned.

Furthermore, the impact of the binary-to-residue and
residue-to-binary conversion was investigated. As far as the
binary-to-residue conversion is concerned, it was found that
the overall performance of the ECPM is barely affected, even
under the worst-case assumption that modulo-p multipliers are
used to implement the conversion, i.e. xpi = ‚xÚpi = ‚xÿ1Úpi. In
addition, following the conversion, input data participate in a
large number of operations (17 RNS multiplications for every
point addition and 15 RNS multiplications for every point
doubling) and thus the cost of the conversion becomes
negligible with respect to the overall processing.

Moreover, assuming a Compressed Multiply Accumulate
Converter (CMAC) [8], it was estimated that at most 11 μs are
needed to perform a residue-to-binary conversion, assuming a
similar technology to [8]. Considering that approximately 5 ms
are needed to perform a point multiplication, the cost of the
conversion is negligible.

VII. CONCLUSION
In this work, an RNS implementation of an ECPM is

proposed. Following the selection of an adequate RNS range
the proposed architecture for point addition, point doubling
and scalar point multiplication was described. We presented
the main results derived from the synthesis tool, proving the
efficiency of the proposed implementation towards other
published works, in terms of delay.

Current work is being conducted on reducing the area of an
ASIC version of the proposed implementation, which will be
exploiting the binary-to-residue and residue-to-binary
converters as well. For example, by exploiting two’s-
complement representation, modular addition and subtraction
can be realized by using the same circuit [11]. Further
mathematical work can also be performed, on combining RNS
and finite field arithmetic more efficiently, in order to reduce
the dynamic range of RNS and consequently the area of the
implementation.

REFERENCES
[1] I. Blake, G. Seroussi, N. Smart, “Elliptic curves in cryptography”,

Cambridge University Press, 2002.
[2] I. O. Aichholzer, H. Hassler, “A fast method for modulus reduction and

scaling in residue number system”, Workshop on Economic Parallel
Processing (EPP ‘93), 40 – 56 .

[3] F. J Taylor, “Residue arithmetic: a tutorial with examples”, IEEE
COMPUTER 1984.

[4] N. Koblitz, “Elliptic curve cryptosystems”, Math. Comp., 48, 203 –
209, 1987.

[5] V. Miller, “Use of elliptic curves in cryptography”, In advances in
Cryptology, CRYPTO – ’85, Springer LNCS 218, 47 – 426, 1986.

[6] G.C. Cardarilli, A. Del Re, R. Lojacono, M. Re, “RNS Implementation
of High Performance Filters for Satellite Demultiplexing”, 2003 IEEE
Aerospace Conference, Proceedings. 2003 IEEE, Vol. 3.

[7] J.-L Beuchat and J.-M Muller, “Modulo M multiplication-addition:
algorithms and FPGA implementation”, IEE ELECTRONIC
LETTERS, vol. 40, No. 11.

[8] T. Srikanthan, M. Bhardwaj, C. T. Clarke, “Area-time-efficient VLSI
residue-to-binary converters”, IEE Proc.-Comput. Digit. Tech., vol. 145,
No. 3, May 1998.

[9] Siddika Berna Örs, Lejla Batina, Bart Preneel, Joos Vandewalle,
“Hardware Implementation of an Elliptic Curve Processor over GF(p)”,
Proceedings of the Application-Specific Systems, Architectures, and
Processors (ASAP ‘03).

[10] G. Orlando and C. Paar, “A scalable GF(p) Elliptic Curve Processor
Architecture for Programmable Hardware”, Proceedings of Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2001).

[11] B. Parhami, “Computer Arithmetic: Algorithms and Hardware
Designs”, Oxford University Press, Inc., New York, 2000.

[12] Bajard J.-C., Imbert L., “A Full RNS Implementation of RSA”, IEEE
Transactions on Computers, Vol. 53, Issue 6, June 2004, 769–774

