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Abstract—An Elliptic Curve Point Multiplier (ECPM) is the 
main part of all Elliptic Curve Cryptography (ECC) systems and 
its performance is decisive for the performance of the overall 
cryptosystem. A VLSI Residue Number System (RNS) 
architecture of an ECPM is presented in this paper. In the 
proposed approach, the necessary mathematical conditions that 
need to be satisfied, in order to replace typical finite field circuits 
with RNS ones, are investigated. It is shown that such an 
application is feasible and that it leads to a significant 
improvement in the execution time of a scalar point 
multiplication. 

I. INTRODUCTION 
ECC was first proposed in 1985 independently by N. 

Koblitz [4] and V. Miller [5] and is gradually gathering both 
scientific and industry interest. The main reason for this is that, 
key bit lengths in ECC are much smaller than other public-key 
cryptosystems. Consequently, less hardware is required to 
implement such public-key cryptosystems. The result is higher 
speed, lower power consumption and smaller certificates, 
which is especially useful in constrained environments such as 
PDAs, smart cards, etc. [6]. 

However, the finite field operations that need to be 
implemented in ECC are time consuming and the operands are 
large integers. Thus, since ECC is based on finite field 
arithmetic, there is a need for fast and efficient finite field 
implementations. 

RNS has been widely studied and used in many 
applications, from digital signal processing to multiple 
precision arithmetic. The main advantages of RNS are the 
decomposition of a given range into parallel paths of smaller 
dynamic ranges, carry-free operations among paths employing 
different moduli, reduced complexity of the arithmetic units 
when large word lengths are needed and reduced power 
consumption. On the other hand, RNS implementations require 
the extra cost of an input converter to translate numbers from 
the standard binary format into residues and an output 
converter to implement the translation from RNS to the binary 
representation [6]. 

The performance of the converters is possible to have a 
major impact on the complexity, latency and power 
consumption. Nevertheless, in the case of data intensive 
computations (e.g. filters or filter banks) these disadvantages 
can be easily counterbalanced by the savings in the internal 
RNS computations. For these reasons, recently, the RNS 
arithmetic has been proposed for use in public-key 
cryptography [12], which requires multiplications of very large 
numbers, and in transmission systems based on Code Division 
Multiple Access (CDMA) [6]. 

The contribution of this paper is, to the authors’ 
knowledge, the first documented ECPM architecture, which 
exploits the RNS representation.  

In the remainder of this article, the basic mathematics of 
RNS and a specific version of RNS useful for our purposes, 
called extended RNS, are described in section II. In section III 
the main concepts of elliptic curve arithmetic are briefly 
analyzed. In section IV a methodology to synthesize RNS and 
finite field operations is presented. In section IV the hardware 
architecture of the proposed ECPM is described. Finally, in 
section V, the main results derived from the synthesis tools, as 
well as comparisons with other published implementations are 
presented. Furthermore, the impact of the binary-to-residue 
and residue-to-binary conversion on the performance of the 
ECPM is investigated. It is shown that, because of the data 
intensive character of Elliptic Curve (EC) arithmetic, the cost 
of the conversions is negligible. 

II. THE RESIDUE NUMBER SYSTEM 

A.  Mathematical Background 
RNS is defined by a set of relative prime integers                

(p1, p2, … , pn) with dynamic range P = ∏ pi. Any integer        
x œ {0, 1, … , P – 1} has a unique representation given by 
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where ‚xÚpi = x mod pi. Assuming two integers a, b in RNS 
format i.e. a = (a1, a2, … , an) and b = (b1, b2, … , bn) then one 
can perform the operations ≈ = (+, -, *) in parallel by 
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However, if a≈b¥P, a reduction modulo is performed in 
the result. Hence, to achieve an exact result, overflow must be 
prevented [3]. 

B. The Extended  RNS  
One way to perform residue-to-two’s-complement 

conversion is through the Chinese Remainder Theorem (CRT). 
Let Pi = P/pi and the notation Pi-1 will be used for the 
multiplicative inverse of Pi according to modulus pi.  It can be 
proved that the exact value x can be expressed by  
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where rx is an integer and rx § n – 1 [2]. This bound on the 
value of rx can be used for choosing an adequate redundant 
modulus. Let pr be a redundant modulus, such that 



 1rp n≥ +  and gcd( , ) 1rP p =   (2)  

and xr be the corresponding residue. This redundant residue is 
available from start to finish along with the residues                
x1, x2, … , xn. Reducing (1) to the redundant residue we get 
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We arrange it to 
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Since rx is strictly bound from above by n (< pr), it follows that 
rx = ‚rxÚpr can be calculated from (4). All operations performed 
for moduli p1, p2, … , pn are performed as well on pr, so our 
number will be represented as (x1, x2, … , xn, xr), which forms 
the extended RNS representation. It has been proved that any 
number x∈ [-P+1,Ω, P+1] represented by (x1, x2, … , xn, xr) 
will be correctly calculated by formulas (1) and (4) [2]. The 
fact that negative numbers can now be calculated correctly by 
equations (1) and (4) will later prove to be extremely useful in 
order to embed RNS in the EC arithmetic.  

III. ELLIPTIC CURVE ARITHMETIC 

A. Elliptic Curves over Fp 

In the remainder of this article we will only focus on 
elliptic curves defined over Fp, where p is a “large” prime 
number. Field elements will be naturally represented as 
integers in the range 0, 1,Ω, p-1, with the usual arithmetic 
modulo-p. An elliptic curve over Fp is defined by an equation 
of the form 

 2 3y x ax b= + +  (5) 

where a, b œ Fp and 4a3 + 27b2 ∫ 0 (mod p) together with a 

special point O, called the point at infinity. The set E(Fp) 

consists of all points (x, y), x, y œ Fp, which satisfy equation 

(5), together with O. The group law defines the addition of two 
points on an elliptic curve. Together with this addition 
operation, the set of points E(Fp) forms a group, with 

O serving as its identity element. It is this group that is used in 

the construction of elliptic curve cryptosystems. The special 
case of adding a point to itself is called a point doubling. 

It has been proved that in affine representation one needs to 
compute the inverse of an element in Fp to perform an addition 
or a doubling of a point [1]. Inversion can be very time 
consuming and thus, to avoid inversions, projective 
coordinates can be used. Given a point P = (x, y) in affine 
coordinates, the projective coordinates P = (X, Y, Z) are given 
by 

 ; ; 1X x Y y Z= = =�� ���  (6) 

There are various projective representations that lead to 
more efficient implementations than using the one in (6). 
Jacobian coordinates is an example of such a representation, 
employed in the implementation presented here. In this case, 
the affine representation is given by 
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B. The Group Law in Jacobian Representation 
Using the representation in (6) and (7), (5) becomes 

 ( ) 2 3 4 6:pE Y X aXZ bZ= + +F . (8) 

Then, addition and doubling of points can be defined as 
follows. Let P0 = (X0, Y0, Z0), P1 = (X1, Y1, Z1) œ E. The sum 
P2 = (X2, Y2, Z2) = P0 + P1 œ E can be computed as follows. If 
P0 = P1, then 
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Based on (9) and (10), one can implement point doubling 
and point addition, respectively. With these algorithms 
available, the next step is to implement the scalar point 
multiplication, which is the most important operation in ECC. 
For our purposes, the binary method algorithm [1] was chosen 
because it is easy to implement and minimizes memory 
requirements. The binary method algorithm is based on the 
binary expansion of k, as follows: 

 
Algorithm 1 Binary method for EC point multiplication 

INPUT: A point P, an l-bit integer k, k = ∑ kj2j, kj œ {0, 1}, j = 0, 1, …, l – 1   

OUTPUT: Q = [k] P. 
1. Q ô O 
2. for 1j l= −  to 0 by –1 do: 
3. Q  ô [2]Q  
4. if kj = 1 then Q ô Q  + P 
5. return Q   

 
The binary method requires l–1 point doublings and W–1 

point additions, where l is the length and W the Hamming 
weight of the binary expansion of k [1]. For any positive 



integer k, the notation [k] is used to denote the multiplication-
by-k map from the curve to itself. The notation [k] is extended 
to k § 0 by defining [0]P = O, and [–k]P = –([k]P) [1]. 

IV. EMBEDDING RNS IN THE POINT ADDITION AND 
DOUBLING ALGORITHMS 

All operations in equations (9) and (10) are modulo-p, 
where p is the characteristic of the field. Thus, if we want to 
implement a cryptographic scheme with an n–bit key, all 
operands and finite field circuitry will be n–bit long. 
Consequently, the main idea proposed here is to replace finite 
field circuits with RNS ones. In that way, the benefits of using 
smaller RNS operands are exploited to implement a faster 
ECPM architecture. 

In order for this replacement to be valid, we need to choose 
an adequate RNS dynamic range. First of all, we assume that 
equations (9) and (10) are computed over the integers, i.e., 
without the modulo-p reduction. Let m be the absolute 
maximum value of these computations. In order for the RNS 
implementation to be valid, we need to choose an RNS 
dynamic range P ¥ m. Then, we can perform the point 
multiplication using RNS circuits and data in RNS format. For 
example, if the field characteristic p is 160-bit long, then the 
equivalent RNS range needs to be 660-bit. In the proposed 
implementation the moduli set chosen, consists of twenty 
moduli, 33-bit long each. It is interesting though that for a field 
characteristic 192-bit long, each moduli needs to be just 42-bit 
long. If a point multiplication result needs to be transformed 
back to a finite field element, we only need to implement 
equation (1) to get a valid number over the integers and then 
perform a final modulo-p reduction to the result to get the 
finite field element. Note that the use of extended RNS allows 
the correct computation of the EC algorithms for point addition 
and doubling, by providing an adequate range, in case a 
negative result occurs. 

V. THE HARDWARE IMPLEMENTATION 
The first step to the proposed architecture was to design 

modulo-p circuits in order to synthesize RNS adders, 
subtracters, and multipliers. Modulo adders and subtracters are 
typical architectures i.e., an addition or a subtraction is 
performed and then a reduction-by-p stage follows. The 
implemented algorithms for modular addition and subtraction 
are as follows [9]. 

Algorithm 2 Modular addition and subtraction 

Require: p, 0 ≤ X < p, 0 ≤ Y < p  Require: p, 0 ≤ X < p, 0 ≤ Y < p          
Ensure: Z = A + B mod p  Ensure: Z = A - B mod p            
1: Z' = X + Y   1: Z' = X - Y                
2: Z" = Z' - p   2: Z" = Z' + p                             
3: if Z" < 0 then    3: if Z' < 0 then                            
4:      Z = Z'    4:      Z = Z"                
5: else     5: else                  
6:     Z = Z"   6:     Z = Z'                                                          
7: end if     7: end if 

 
Modulo multiplication is implemented using Horner’s rule 

shown in (11) [7] 

( )( )( )1 2 0... 2 2 ... 2r rp p
XY x Y x Y x Y

− −
= ⋅ + ⋅ + ⋅ +  (11) 

where r is the number of digits of X. The algorithm for 
modular multiplication has as follows. 
 

Algorithm 3 Modular multiplication based on Horner’s rule  

Require: 0 ≤ X, Y œ N and r, p œ N*                           
Ensure: Z[0] = ‚XYÚp                                                           
1: Z[r] = ô 0;                                      
2: for i = 0 to r do                       
3:      Z[r - i] ô ‚2Z[r - i + 1] + xr - iYÚp                                                                   
4: end for 

The designed circuits are shown in Fig. 1, 2, and 3. 

Figure 1.  The modulo–p adder. 

Figure 2.  The modulo–p subtracter. 

Figure 3.  The modulo–p multiplier. 

The RNS circuits are a parallel combination of the circuits 
of Fig.1, 2, 3. Their architecture is shown in Fig.4, where each 
block represents one of the circuits of Fig.1, 2, 3. 

Figure 4.  Architecture of the RNS structures. 



With the use of the RNS structures presented, the point 
addition and doubling algorithms can now be implemented. 
These structures use 1 RNS adder, 1 RNS subtracter, 1 RNS 
multiplier, multiplexers and decoders. A multiplexer is placed 
at the inputs of each RNS structure, in order to choose the 
operands that will be processed. Correspondingly, a decoder is 
placed at the output of each RNS structure, which drives the 
result to an appropriate register. The multiplexers’ and 
decoders’ control signals are derived from a counter. 

The proposed Elliptic Curve Point Adder (ECA) and 
Elliptic Curve Point “Doubler” (ECD) architectures are shown 
in Fig.5 and 6. The notation “to_X” means that data are driven 
to register “X” whereas “from_X” means that data are read 
from register “X”. Note that the registers shown on Fig.5, 6 are 
RNS registers i.e., each block stores data in RNS format. For a 
point addition, 17 RNS multiplications are needed whereas for 
a point doubling, 15 RNS multiplications are performed. 

Figure 5.  The proposed architecture of the ECA. 

Figure 6.  The proposed architecture of the ECD. 

By exploiting the binary method we present the proposed 
architecture of the ECPM in Fig.7.  

Figure 7.  The proposed architecture of the ECPM. 

In each clock cycle a point addition or a point doubling is 
performed, according to the bit value of k. The shift register 
also generates the control signal of the input multiplexer. 
When a complete shift of k has been detected, the multiplexer 
drives point O at the input of the ECD. This operation refers to 
the first line of the binary method algorithm and is necessary 
for the initialization of the point multiplication procedure. 

VI. PERFORMANCE AND COMPARISONS 
ECPM was synthesized in a Xilinx Virtex 2–Pro  

(XCVP125, FF1696) FPGA. Table 1 summarizes the main 
results derived from synthesis as well as comparisons with a 
well–known design in Fp.  

TABLE I.  DELAY TIMES OF THE MAIN OPERATIONS IN ECPM 

Delay (ms)                  
Operation 

Fp [9] Fp with RNS 
representation 

Multiplication 0.0050 0.00055 

EC addition 0.0740 0.0110 

EC doubling 0.070 0.0096 
General Point 
Multiplication 14.140 2.416 

  

The above table’s analysis shows the efficiency of the 
proposed implementation. An approximate 82% improvement 
in the execution time of a scalar point multiplication was 
achieved. Note that the implemented ECPM utilizes a 160-bit 
integer k, i.e., the underlying field characteristic p, is 160-bit 
long and the selected RNS base consists of twenty relative 
prime moduli, 33-bit long each. The implementation in [9] also 
features a 160-bit k and was synthesized in a Xilinx Virtex-E 
(V1000E-BG-560-8) FPGA. Furthermore, the reported 
frequency was 75 MHz, whereas in [9] the maximum clock 
frequency was 91.308 MHz. The only existing previous work 
done on a FPGA, apart from [9], is from Orlando and Paar 
[10]. They reported that their processor would compute a point 
multiplication in about 3msec but only if were possible to 
extract 100% throughput from their multiplier. The reported 
frequency in [10] was 40 MHz. 



As far as the area is concerned, the proposed 
implementation utilizes approximately 50,000 4 input LUTs, 
whereas in [9] and [10] only 11,227 LUTs and 11,416 LUTs 
are used, respectively. This can be explained by the fact that, 
the RNS range that needs to be chosen is much larger than the 
field characteristic p, as proved in section IV. This is the main 
reason why twenty moduli were chosen to construct the 
adequate RNS range mentioned. 

Furthermore, the impact of the binary-to-residue and 
residue-to-binary conversion was investigated. As far as the 
binary-to-residue conversion is concerned, it was found that 
the overall performance of the ECPM is barely affected, even 
under the worst-case assumption that modulo-p multipliers are 
used to implement the conversion, i.e. xpi = ‚xÚpi = ‚xÿ1Úpi. In 
addition, following the conversion, input data participate in a 
large number of operations (17 RNS multiplications for every 
point addition and 15 RNS multiplications for every point 
doubling) and thus the cost of the conversion becomes 
negligible with respect to the overall processing.  

Moreover, assuming a Compressed Multiply Accumulate 
Converter (CMAC) [8], it was estimated that at most 11 μs are 
needed to perform a residue-to-binary conversion, assuming a 
similar technology to [8]. Considering that approximately 5 ms 
are needed to perform a point multiplication, the cost of the 
conversion is negligible.  

VII. CONCLUSION  
In this work, an RNS implementation of an ECPM is 

proposed. Following the selection of an adequate RNS range 
the proposed architecture for point addition, point doubling 
and scalar point multiplication was described. We presented 
the main results derived from the synthesis tool, proving the 
efficiency of the proposed implementation towards other 
published works, in terms of delay. 

Current work is being conducted on reducing the area of an 
ASIC version of the proposed implementation, which will be 
exploiting the binary-to-residue and residue-to-binary 
converters as well. For example, by exploiting two’s-
complement representation, modular addition and subtraction 
can be realized by using the same circuit [11]. Further 
mathematical work can also be performed, on combining RNS 
and finite field arithmetic more efficiently, in order to reduce 
the dynamic range of RNS and consequently the area of the 
implementation.      
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