
1

Receive Descriptor Recycling for Small Packet
High Speed Ethernet Traffic

Abstract— This paper presents the concept of Receive De-
scriptor Recycling to significantly reduce the performancedrop
associated with small packet Gigabit Ethernet traffic. Since limits
and trade-offs are inherent when optimising for small packet
traffic, all important aspects in this context are covered. Low-
level measurements were performed at the CERN LHCb online
Data Acquisition (DAQ) system, which is to a large extend made
up of commodity equipment. Results gathered show the Ethernet
Controller (Network Interface Card, NIC) driver currently is the
major bottleneck, preventing the system from reaching maximal
Gigabit Ethernet performance. Receive Descriptor Recycling is
implemented under Linux for Intel’s e1000 NIC driver, and is
shown to successfully remedy the driver inefficiency.

Index Terms— Gigabit Ethernet, Linux networking, NAPI,
PCI-X, e1000.

I. I NTRODUCTION

BBROAD-BAND TECHNOLOGIES enable considerable
amounts of data to be transferred through a large network

at comfortable speeds. Many modern DAQ systems, such as
the LHCb Online DAQ system [1], can therefore depend on
commodity hardware to reduce cost and simplify administra-
tion. Gigabit Ethernet is particularly attractive becausethis
technology matured over the years and it has a very appealing
performance to cost of ownership ratio.

Apart from full load link traffic, of which the effects have
been studied in [2] [3], small packets have become more and
more important in many real time applications. An example of
a popular application, that causes this kind of network traffic,
is voice-over-IP (VoIP). For each VoIP connection, 50 network
packets are sent every second with a data payload size of 160
bytes or even less [4]. All Linux based firewalls, routers and
web caches, where a large amount of small network packets
is traveling through, can benefit from the results of this paper.

High reliability of small-sized transmissions is also crucial
for the correctness of calibration runs for the LHCb [5]
experiment, at the CERN LHC accelerator [6]. Here, small
size packets are combined with extreme high packet rates
and a near real time constraint. Some work on small packet
traffic effects was conducted in [7], but no thorough low-level
analysis has yet been performed. Also, Intel has released a
document on small packet traffic performance [8], however, it
presents merely recommendations which are not substantiated
by solid measurements to proof any performance gain.

This paper studies the performance of an Ethernet device
with small packets and remedies the associated performance
drop by implementing Receive Descriptor Recycling (RDR)
for Intel’s e1000 NIC Linux driver. First, Section II will
elaborate on the LHCb DAQ system, where the low-level mea-
surements are performed. Section III describes the hardware
setup and equipment used, followed by an overview of how

networking is implemented for Linux in Section IV. Next,
Section V and VI summarise the results of the performance
measurements and low-level analysis, respectively. Both gather
proof implying the Ethernet Controller’s driver as the actual
bottleneck. Finally, a solution to this bottleneck is provided by
the RDR mechanism described in Section VII. Section VIII
concludes the paper with a discussion on further work.

II. LHC B DAQ ONLINE SYSTEM

The LHCb Data Acquisition network [1] relies on Gigabit
Ethernet over copper UTP to interconnect custom made elec-
tronics with the computing farm of commodity PCs. The farm
of processors is partitioned into sub-farms, each one being
interfaced to the readout network switch by a gateway (called
an Sub-Farm Controller, SFC). A schematic overview of the
system is shown in Fig. 1.

The data sources are formed by the front-end electronics,
which connect with the switched network through NICs.
Different trigger levels [9] allow the initial data rate of 40 MHz
to be reduced by two orders of magnitude before entering
one of the SFCs. A SFC receives all fragments of a sub-
set of a selected event and assembles them in complete event
structures. Via another Gigabit Ethernet switch, it distributes
the events to a farm-node that will perform final event filtering
to bring the rate to permanent storage down to approximately
200 Hz.

Performance of a SFC is critical for sizing whole the system.
It can be measured by means of packet rate, packet loss,
response time and throughput. Also, efficient CPU utilisa-
tion and resource requirements are important criteria. When
optimising for small packet traffic, inevitable trade-offsare
encountered, e.g. CPU and resource requirements increase in
order to accommodate high rates of small packets, along with
a rise in host bus utilisation. Note that transmit performance
is not affected by small packet traffic to the same extent as
receive performance. This asymmetry exists because the local
host cannot usually overwhelm the Ethernet Controller with
outgoing traffic.

III. H ARDWARE SETUP

All benchmarks were performed on a SFC candidate system
running two 32-bit Intel Xeon processors. The DAQ LAN
is a Gigabit Ethernet network, connected by cat 5e copper
UTP wires. The setup contained two servers and one network
processor [10] as a very powerful traffic generator. All servers
had hyper-threading [11] enabled.

Both Intel Pro/1000 MT dual and quad port Ethernet NICs
were used. On the SRV06 host, version 6.0.54-k2-NAPI of the
e1000 network driver was used, on the SFC04 host this was

2

Fig. 1. Schematic view of the LHCb DAQ.

version 5.6.10.1-k2-NAPI. An overview of relevant system
specifications is presented in Table I, including the network
processor used for frame generation.

TABLE I

SPECIFICATIONS OF HARDWARE USED.

Host Chipset CPU Linux
PCI-X bus Systembus Kernel

SRV06 ServerWorks GC Dual Xeon 2.4GHz Scientific 3.0.4
64bit 133MHz 400MHz 2.6.12-smp

SFC06 Dell SC1425 Dual Xeon 2.8GHz Scientific 3.0.4
64bit 133MHz 800MHz 2.6.11-smp

Type Ports Chipset Host bus (max)

Intel Pro/1000MT dual 82546EB PCI-X 64b 133MHz
Intel Pro/1000MT quad 82546EB PCI-X 64b 133MHz
IBM PowerNP NP4GS3 tri BCM5700 PCI

IV. L INUX NETWORKING

The tests presented in this paper were performed using raw
Ethernet frames using the IEEE 802.3 MAC format [12]; they
consist of the 14 byte header followed by variable length user
data and a 4 byte CRC-checksum at the end, resulting in a
total data overhead of 18 bytes per frame.

When a packet is received, the NIC copies it in the host
memory through Direct Memory Access (DMA) and then
raises an interrupt. Each device driver maintains a DMA ring
(circular buffer) to this end. In order to keep kernel response
time small, system interrupts must be disabled for as little
time as possible. Softirqs [13] allow the system to schedule
deferrable tasks, i.e. Interrupt Service Routine (ISR) tasks that
can safely be ran without disabling interrupts. When a NIC
raises an interrupt, critical tasks, during which interrupts are
disabled, are performed and a softirq for the deferrable tasks
is scheduled. The softirq code is executed when the interrupt
handler finishes and interrupts have been enabled.

When a system is flooded by packets, a torrent of interrupts
is generated by the NIC, which in turn prevents the kernel
from processing the packets, since it is spending all its time

Fig. 2. The NAPI mechanism in Linux kernel 2.6.

in interrupt handling. This is commonly known as a livelock.
NAPI [14] applies adaptive interrupt coalescing to offer a
compromise between an interrupt driven scheme and a polling
scheme, effectively reducing the number of interrupts when
flooded. An overview of NAPI is shown in Fig. 2. A NAPI-
enabled NIC driver will only interrupt the system on the arrival
of the first packet in a batch. Subsequently, it registers to the
system that it has work and turns off interrupts concerning
receiving packets or running out of receive buffers (referred
to as Receive Descriptors, [15]) in its DMA ring. Furthermore,
any packets arriving after the DMA ring is filled will be
dropped without disturbing the system. This approach meets
the goal of preventing a system livelock. Softirq is utilised
by NAPI to schedule its polling routine which interrogates
devices that registered to offer packets.

The situation so far allows the kernel to process incoming
packets as fast as it can. However, since softirqs are invoked
upon return from an interrupt handler, the kernel will just try
to keep up with packet processing and user level code will
never get any CPU time.

To solve this situation, Linux has implemented a low priority
softirq daemon (ksoftirq [13]) which basically checks for any
pending softirqs, only if there is free CPU time. This way, user
processes are guaranteed not to suffer under heavy traffic. On
the other hand, if the system acts as a network node, as is the
case in the LHCb DAQ Project, then ksoftirqd will virtually
have whole the CPU at its disposal.

From a system performance point of view, sending of
packets is much simpler. The NIC driver provides a function
through consistent DMA mapping which instructs the hard-
ware to begin transmission. Concurrent access to this function
is prevented by use of a spinlock. Under heavy load, when
the hardware is unable to keep up, packet transmission may
be deferred to a low priority ksoftirqd thread.

V. PERFORMANCEMEASUREMENTS

A. Receive Throughput

To measure receive throughput, the network processor (NP)
acted as a source, flooding the SFC with packets. Fig. 3(a)
shows the bit rate measured when receiving on one port of
the SFC from one port of the NP with a variable frame
size. The bit rate measured at the output of the NP well
matches the theory, apart from regular drops. According to
the NP documentation, this behaviour is to be expected when
pushing this device to the Gigabit Ethernet limit. The SFC
receive rate drops accordingly of course. In the range of 0 to
200, the bit rate measured at the input of the SFC is much
lower (data is lost). In higher ranges, the sent bit rate is

3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

bi
t r

at
e

(G
b/

s)

payload (bytes)

Intel(r) 82546EB Dual port

received
send

theory
.1/20*16/20*x+.085

pci bw

(a) Dual card, one port, plotted with theoretical Gigabit Ethernet limit, PCI
bandwidth and slope.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

bi
t r

at
e

(G
b/

s)

payload (bytes)

Intel(r) 82546EB Quad port

received eth2
send 1->eth2
received eth3
send 2->eth3

theory

(b) Quad card, two ports simultaneously, plotted with theoretical Gigabit
Ethernet limit.

Fig. 3. Receive throughput from NP (port x) to SFC (eth y) for Intel
NIC.

reached (no losses). Receiving on both ports of the dual card
simultaneously, produces an identical plot.

Fig. 3(a) also shows the theoretical limit of the PCI bus.
It is established that, in the case of operating one single
port, this PCI bandwidth will not pose any limit on Gigabit
Ethernet transfers, even taking into account the fact that this is
a theoretical value which will never actually be reached dueto
numerous non-idealities. The same figure also shows a linear
fit of the first part of the curve. The slope is 0.004, which is
in agreement with measurements in [7]. In the continuation
of this paper, however, a different conclusion with regard to
what contributes to this slope will be reached.

The same measurements were done on an Intel quad port
NIC, the resulting plot is shown in Fig. 3(b). The slope of
the linear part now amounts to 0.002, a value insensitive to
the inter-frame delay setting of the NP. This slope is clearly

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 200 400 600 800 1000 1200 1400 1600

ro
un

d
tr

ip
 ti

m
e

(u
s)

payload (bytes)

PingPong SFC-pcix-133/SRV-pcix-133

fit
rrt

Fig. 4. PingPong benchmark from SFC to SRV, with both Intel dual
cards on PCI-X bus 64bit 133MHz. Notice the sudden increase when
the MTU is reached (i.e. due to the extra fragmentation overhead).
These points were not included in the linear fit.

worse than the 0.004 slope of the dual card. A more careful
inspection of the board layout reveals that, whereas the dual
port is basically one single Intel FW82546EB chip, the quad
card has -naturally- two such chips, but also a lot of supporting
chips such as a SST 39VF020 2Mbit Flash memory bank, a
Tundra Tsi310 PCI-X bridge and an Altera MAX 7000A PLD.
This may give cause to the quad card chipset being not as
’streamlined’ as the single-chip dual card. During this test, no
PCI-X transfer bottleneck was observed.

B. Response Time

The aim of this test is to retrieve the slope of the delay as
function of payload. The minimum Round Trip Time (RTT)
was measured for gradually increased payload size, each time
taking 1 000 measurements. Note that the effective payload is
46 bytes larger now, since the final packets also contain an
ICMP header (8 bytes) and IP header (20 bytes), next to the
Ethernet header (14 bytes) and CRC-checksum (4 bytes).

Following [3], comparing this slope with the expected,
calculable value gives an insight in the total amount of time
spent in different parts of the system.

TABLE II

MEASURED SLOPES OF DIFFERENT SETUPS.

Ping Network Pong Min. RTT slope Difference
PCI-X 64b PCI-X 64b (µs/byte) (µs/byte)

66MHz 1 Gbps 133MHz 0.02739 5.4e-3
100MHz 1 Gbps 133MHz 0.02575 5.7e-3
133MHz 1 Gbps 133MHz 0.02531 5.5e-3

The measured values are presented in Table II, along with
their difference compared to the total expected RTT going
from SFC04 to SRV06 and back, effectively passing through
every component twice. All values are well in agreement with
the expected ones [3], given the rather large margin of error
(around 20%) for this kind of test.

Apart from the slope, also the intersect was calculated by
the fit. All tests had a small intersect of about 23 to 24µs,
confirming that interrupt throttling [16] was disabled on the
Ethernet Controller.

4

VI. L OW LEVEL MEASUREMENTS

The above-mentioned benchmarks measure the real per-
formance of the network, but generally do not allow for
identification of bottlenecks present. Therefore, lower level
tests as PCI-X traffic analysis and kernel profiling were sub-
sequently carried out, emphasising the hardware and software,
respectively.

A. PCI/PCI-X Analysis

Similar to network overhead issues, PCI/PCI-X bus proto-
cols also impose penalties on small packet traffic. In addition
to the actual data transfer, each bus transaction requires
extra control cycles which introduce overhead (e.g., arbitration
latency, address phases, attribute phases, wait states). Bus
overhead costs become more pronounced with small packet
traffic as bus control and wait cycles consume a larger fraction
of each bus transaction.

Fig. 5. Transition between smooth and stumble PCI traffic. (1 of 2
ports receiving from NP @ PCI 64bit 66MHz)

Fig. 5 shows the two regimes of transmission across the PCI
bus when flooding the NIC with a NP. The dark areas indicate
that the signal varies a lot, i.e. frames are transmitted across
the bus. Notwithstanding that this plot was taken in PCI mode,
exactly the same behaviour was observed when analysing the
PCI-X traffic. This section summarises the flow of traffic on
the bus, going from the smooth to the stumble regime.

During the smooth regime, all frames are nicely put on the
PCI bus behind each other (inter-frame delay of 54 CLKs
or 0.8 µs). The Intel Pro/1000 MT Ethernet Controller uses
receive and transmit descriptors to keep the books ([15]).
Such a descriptor is basically a pointer to memory space,
indicating a block of configurable size for the NIC to store
a received frame or read in a frame to send. From here on,
we will concentrate on reception of frames.

Receive Descriptors (RD) are made available to the NIC in
groups of 16 consecutive descriptors. The tail address of this
group is provided by a Receive Descriptor Tail (RDT). When
a frame is received, the Ethernet Controller uses the next RD
in the current RDT to find out where to store the frame. After
the DMA transfer finishes, this RD is sent back to the driver
to advertise the presence of a frame at that location (delay of
7 CLKs).

Fig. 6 visualises an interpreted version of Fig. 5. It shows
left to right and top to bottom the advancing time axis (in clock
ticks). The series of black dots are frames that are written to
main memory. The following traffic pattern can be extracted
for the smooth regime (0 to 14 500 CLKs):

1) Four frames (black dots) are transferred to main memory
through DMA bursts with an inter-frame delay of about
45 CLKs or 0.7µs.

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000

33000

36000

39000

42000

45000

3 7 11 15 19 23 27 31 35 39 43

47 51 55 59 63 67 71 75 79 83 87

91 95 99 103104 107 111 115 119 123 127 131135

139 143 147 151 155 159 163 167 171 175 179

183 187 191 195 199 203 207208 211

ih
i-

214215

rdt

219223

rdt

226227

rdt

231

rdt
i+

235239 243 247 251 255 259

263 267 271 275 279

ih
i-

rdt

283287

rdt

290291

rdt

295

rdt
i+

299303 307 311 315 319 323 327 331335 339

343

ih
i-

rdt

347351

rdt

354355

rdt

359

rdt

i+

363367 371 375 379 383 387 391 395 399 403 407

ih
i-

rdt

411415

rdt

418419

rdt

423

rdt
i+

427431 435

439 443 447 451 455 459463

Fig. 6. Trace for the transmission from NP to SRV06 (from Fig. 5).

2) Following afterwards, i.e. 25 CLKs or 0.4µs, the 4
corresponding RDs are written back to the driver (one
grey spot).

3) Step 1 and 2 are repeated 16 times (containing a total
of 64 frames), after which a new RDT is employed by
the NIC, allowing to fetch 16 new RDs (small gaps in
between series of 64 frames).

Under normal circumstances, the driver will provide the
NIC with new RDTs (marked ’rdt’ in Fig. 6), allowing it to
fetch newly allocated RDs in time. This transfer of new RDs
continues until all allocated descriptors for that batch have
been provided, or, the card’s frame receive buffer is nearlyfull
and the card terminates the descriptor transfer by raising the
STOP# signal in order not to lose any frames. Since a NP is
flooding the card during this test (with approximately 1 million
packets per second), the latter will happen more and more, as
seen on theSTOP# signal line (Fig. 5). After the descriptor
transfer, the frame receive buffer is quickly emptied to regain
the time lost during this transfer. All frames are now put on
the PCI bus with a minimum delay of 7 CLKs in between.

Clearly, under persistent heavy traffic load, the card will
become unable to fetch enough descriptors to keep up with the

5

high frame rate, and at the same time sent every single frame
to the system. The card will have to allow for a FIFO receive
buffer overrun and silently drop frames until it has some more
RDs to quickly empty the buffer and try start receiving again.
The relief is, however, of short duration, as the card will soon
have exhausted it (already) very limited pool of RDs, and it
will have to wait again.

This is what happens in the second so-called stumble regime
(14 500 CLKs to end), where huge gaps of 4 000 CLKs
show the lack of RDs is preventing any further traffic until
new RDTs are received. This results in many FIFO buffer
overruns and a huge packet loss of up to 500k packets per
second. Furthermore, the omnipresentSTOP# indicates that
any transfer that takes longer than absolutely necessary is
abruptly terminated by the NIC.

In the smooth part, the system can process 1 frame per
microsecond (i.e. what the NP sends). When tumbling into
stumble regime, this number degrades to a value of merely
0.3 frames per microsecond or 0.28 Gb/s, cfr. earlier results,
e.g. Fig. 3(a). This also confirms that the linear part for small
packet sizes is caused by this stumble behaviour.

Where one might be tempted to think the PCI bus or
NIC is the cause for this bottleneck, calculations on PCI bus
utilisation proved otherwise. During the whole trace, peak
data rates did not reach any higher than 250 MB/s. Since the
practical limit for a PCI bus is about 50% of the theoretical
maximum, which is 533 MB/s in this case, this is acceptable
and it was already a clear indication that nor the PCI bus, nor
the card were responsible for this stumble behaviour. Note that
this trace was taken for a single port receiving frames. It is
clear that a PCI 64bit 66MHzwill pose a bottleneck when
more than 1 port is operating on the same bus.

Compared to PCI, it was observed that PCI-X traffic con-
tained less errors and less accompanying WAIT states. Along
with higher clock frequencies, the more intelligent use of
WAIT states and so-called split transactions instead of delayed
transactions are among the most important features of the PCI-
X protocol.

A look at the kernel’s memory management information,
provided by the/var/slabinfo file, made clear that
memory access was responsible for the large gaps in stumble
regime. These gaps can be explained by the DMA slab
freeings. Normally, a CPU keeps a freed DMA slab in its
bucket (one bucket per CPU). Occasionally, however, a large
quantity of main memory is reallocated by the driver and then
the main memory needs to be accessed, preventing others,
e.g. DMA accesses by the NIC, from accessing the main
memory. Beware, not the memory bank technology but the
way the driver seems to handle memory access is causing the
bottleneck. Simple on the back-of-the-envelope calculations
show that the DDR-2 400MHz (PC2-3200) provides enough
raw bandwidth.

It is clear that the Intel Pro/1000 MT Ethernet Controller
card, when used in combination with a fast PCI-X host bus,
will not become a bottleneck, even for quad port operation.
Therefore, the next section takes a closer look to the software
side of the network infrastructure, i.e. the Linux operating
system and the e1000 Ethernet Controller driver.

B. Kernel Profiling

This last test employed theOProfile package [17], a
system-wide profiler for Linux systems, capable of profiling
all running code at low overhead. It reports on the number of
times a certain function (in user space, kernel, driver,...) has
been called and what percentage of the total samples taken
this represents.

Fig. 7. Summary of relative occupation of the CPU during a 5 minute
flood by the NP (1 of 2 ports @ PCI-X 64bit 133MHz).

Results of theOProfile test are summarised in Fig. 7.
Analysing the exact content of the most frequently made
calls, it is established that all are involve with freeing and
reallocating RDs. This gave cause for the idea to tune the
e1000 driver to more cleverly handle this RD processing, and
implement some kind of Receive Descriptorrecycling. This
idea, along with its implementation in the e1000 source code,
will be covered in the next section.

VII. R ECEIVE DESCRIPTORRECYCLING

The e1000_main.c file of the e1000 driver source
code [18] contains most of the driver’s basic functionality.
Analysing this source for packet reception handling on driver
level, points out that the most frequently called functions
of Fig. 7 are all related to one single very time consuming
operation: the freeing of large heaps of memory. Especially
when talking small payload sizes, it is clear that the situation
only worsens due to more descriptors and thus more memory
management overhead.

It is this overhead that prevents the driver from quickly
sending new RDs to the Ethernet Controller, as they need
to be freed and reallocated first. This is why theReceive
Descriptor Recyclingmechanism was implemented. The idea
is to allocate a fixed number of permanent descriptors which
are reusedevery time, effectively taking away the need for
the costly reallocation overhead. The only processing that
remains to be done is resetting some fields in the descriptors.
The remainder of this section will outline the details of this
implementation.

First it was needed to store the permanent buffers in
the e1000_adapter struct (see e1000.h), so they
became associated with each Ethernet Controller present in
the system. For this, it was extended by two members: an

6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

bi
t r

at
e

(G
b/

s)

payload (bytes)

NP->SRV06 - Intel dual card, two ports to NP - kernel 2.6.12

original
with RDR

theory

Fig. 8. Receive throughput from NP to SRV fortwo ports on a dual
Intel NIC using official and patched driver.

array to store the pre-allocated socket buffers, and an array to
point to the associated data fields. A fixed array size of 2 048
was chosen, which was theRxDescriptors e1000 driver
parameter used in all previous tests.

During the driver initialisation, the array is allocated in
memory and the data pointers are set up. To prevent the
driver from freeing the allocated array, the number of users
for each socket buffer is artificially increased to 2 by calling
skb_get(). As long as the number of users remains higher
than 2,kfree_skb() will never free them, since it believes
someone is still using the socket buffer and its data.

This is realised by altering the driver function call
flow in e1000_alloc_rx_buffers(). Here the call to
dev_alloc_skb(), which would return a fresh allocated
socket buffer (skb), is replaced by returning one of our pre-
allocated skbs in the array. Next, the skb reset is implemented
by the newly addedreset_skb() function.

Please refer to [19] for a detailed overview of exact code
implementations.

To check for any performance increase for small packet
sizes, the ’Receive Throughput’ test (see Section V-A) was
repeated. For small frame sizes, the RDR-enabled driver was
able to reduce packet loss by 40%, see Fig. 8. The influence
is the most clear for short delay packets. The performance of
higher payloads remained unchanged with RDR.

VIII. C ONCLUSIONS ANDFURTHER WORK

Several benchmarks were performed on Gigabit Ethernet
hardware and the Ethernet Controller driver. Among the as-
pects analysed in this work were throughput, packet loss,
response time and efficient resource utilisation. Emphasiswas
put on small packet size network traffic, to be used for
calibration of the LHCb experiment. It was shown that the
current bottleneck lies in the way the e1000 driver handles
the Receive Descriptor memory management, which proofs to
be fatal for small packet sizes. In order to remedy the situation,
a Receive Descriptor Recycling mechanism was proposed and
implemented in the official e1000 driver. Results have shown
an improvement of small packet size performance by 40% in
terms of increase in throughput and reduction of packet loss.

The knowledge gathered by the reported measurements, will
be used to optimise the design of the DAQ infrastructure. The
proposed Receive Descriptor Recycling will be tested in the
real-life DAQ Prototype Farm environment. Further work also
includes enhancing the RDR performance by implementing
the pre-allocated buffers in such a way that they do not cross
cache lines as to prevent numerous cache trashing.

IX. A CKNOWLEDGEMENTS

This work has been funded by the Summer Student Intern-
ship Committe of CERN, Geneva, within the framework of
the Summer Student Programme 2005.

REFERENCES

[1] A. Barczyk, J.-P. Dufey, B. Jost, and N. Neufeld, “The newLHCb trigger
and DAQ strategy: A system architecture based on gigabit-ethernet,”
IEEE Trans. Nucl. Sci., vol. 51, pp. 456–460, June 2004.

[2] A. Barczyk, A. Carbone, J.-P. Dufey, D. Galli, B. Jost, U.Marconi,
N. Neufeld, G. Peco, and V. Vagnoni, “Reliability of datagram transmis-
sion on gigabit ethernet at full link load,” CERN, Geneva, CERN/LHCb
2004-030, 2004.

[3] R. Hughes-Jones, P. Clarke, and S. Dallison, “Performance of 1 and
10 gigabit ethernet cards with server quality motherboards,” Future
Generation Computer Systems, vol. 21, pp. 469–488, Apr. 2005.

[4] Voice Over IP - per call bandwidth consumption. [Online]. Available:
http://cisco.com/warp/public/788/pkt-voice-general/bwidth consume.html

[5] LHCb, “LHCb technical proposal,” CERN, Geneva, CERN/LHCC 98–4,
1998.

[6] O. S. Bruning, P. Collier,et al., Eds.,LHC Design Report. Geneva,
CH: CERN, 2004.

[7] A. Barczyk, D. Bortolotti, A. Carbone, J.-P. Dufey, D. Galli, B. Gaidioz,
D. Gregori, B. Jost, U. Marconi, N. Neufeld, G. Peco, and V. Vagnoni,
“High rate packets transmission on ethernet LAN using commodity
hardware,”IEEE Trans. Nucl. Sci., accepted for publication.

[8] “Small packet traffic performance optimization for 8255x and 8254x
ethernet controllers,” Application Note AP-453 rev. 1.0, Intel, Sept.
2003.

[9] LHCb, “LHCb trigger system technical design report,” CERN, Geneva,
Tech. Rep. TDR 10, Sept. 2003.

[10] J. R. Allen, Jr.,et al., “IBM PowerNP network processor: Hardware,
software, and applications,”IBM J. Res. and Dev., vol. 47, Mar. 2003.

[11] “Hyper-threading technology on the Intel Xeon processor family for
servers,” White Paper, Intel, Oct. 2002.

[12] Ethernet LAN Medium Access Control (MAC) Specification, IEEE Std.
802.3, 1985.

[13] D. Bovet, Understanding the Linux Kernel, 2nd ed. O’Reilly, 2003.
[14] J. Salim, R. Olsson,et al., “Beyond softnet,” inProc. 5th Ann. Linux

Showcase and Conf., Oakland, California, Nov. 2001.
[15] “PCI/PCI-X family of gigabit ethernet controllers software developer’s

manual,” rev. 2.5, Intel, July 2005.
[16] “Interrupt moderation using Intel gigabit ethernet controllers,” Applica-

tion Note AP-450 rev. 1.1, Intel, Sept. 2003.
[17] OProfile development pages. [Online]. Available:

http://oprofile.sourceforge.net
[18] e1000 source code at the Linux cross reference project.[Online].

Available: http://lxr.linux.no/source/drivers/net/e1000/
[19] C. Walravens and B. Gaidioz, “Low level gigabit ethernet analysis for

the LHCb computing farm,” CERN, Geneva, CERN/LHCb 2005-091.

http://cisco.com/warp/public/788/pkt-voice-general/bwidth_consume.html
http://oprofile.sourceforge.net
http://lxr.linux.no/source/drivers/net/e1000/

	Introduction
	LHCb DAQ Online System
	Hardware Setup
	Linux Networking
	Performance Measurements
	Receive Throughput
	Response Time

	Low Level Measurements
	PCI/PCI-X Analysis
	Kernel Profiling

	Receive Descriptor Recycling
	Conclusions and Further Work
	Acknowledgements
	References

