
Interval fuzzy modelling in fault detection for a
class of processes with interval-type parameters

Abstract—In the paper an application of the interval fuzzy
model (INFUMO) in fault detection for a class of processes
with uncertain interval-type parameters is presented. A
confidence band for the process input-output data is ob-
tained and approximated using a fuzzy model with interval
parameters. The approximation is based on partial fuzzy
linear programming using l∞-norm as a measure of the mod-
elling error. Applying high-pass filtering when obtaining the
confidence band makes it possible to use arbitrary sets of
identification input signals. An application of the INFUMO
the in detection of load change in a motor-generator system
is presented to demonstrate the benefits of the proposed
method.

I. Introduction

Takagi-Sugeno fuzzy models [16] have been widely used
in recent years for building models of nonlinear processes.
Fuzzy models are easily interpretable and very powerful
when it comes to approximating arbitrary nonlinear func-
tions. Because of its simplicity and the use of linear pro-
gramming, fuzzy linear regression is frequently used to eval-
uate the relationship between the dependent and indepen-
dent variables of a fuzzy model [17].

In seeking a means of describing the domain of functions
that result from an uncertain system, one way to define a
fuzzy model is to fix certain membership functions and es-
tablish the consequence parameters that vary in a certain
interval. By applying only one model with interval param-
eters, one is able to define the upper and lower boundaries
of a given band. As was introduced and shown in [18],
the optimization of the interval fuzzy model (INFUMO)
parameters based on partial fuzzy linear programming is
easy to implement and is not computationally demanding.

When process parameters vary in a certain tolerance
band, it is advantageous to define a confidence band over
a finite set of input and output measurements in which
the effects of unknown process inputs are already included.
The main idea of the proposed approach is to apply the
INFUMO to provide the boundary functions of a given pa-
rameter interval and use it in a fault-detection system as a
residual generator. By calculating the normalized distance
of the process output from the boundary model outputs, a
numerical fault measure is obtained.

The problem of designing a robust fault-detection system
has been extensively studied over the past two decades.
The main challenge is to construct a residual generator
that will be insensitive to the influences of disturbances
and model uncertainties. However, if the uncertainties are
unstructured only an approximate decoupling among the
faults and the uncertainties can be reached. In [4] a gener-
alized residual scheme based on a factorization technique
and the use of a postfilter has been proposed. A large
number of robust postfilter design algorithms have been

developed in recent years: the eigenvalue-eigenvector al-
gorithm in the time domain [10], frequency-domain-based
algorithms using H2 [8] and H∞ theory [14], [11], [20], al-
gorithms for nonlinear processes [15], and the use of nonlin-
ear adaptive observers [3], [5]. All of the above-mentioned
methods have something in common: that the transfer
functions from faults and unknown inputs to the output
must be known in order to draw a distinction between a
fault and the influence of unknown inputs. For a class of
interval-type uncertain systems where the influence of un-
known inputs cannot be modelled, the proposed approach
is more appropriate because both the influences of unknown
inputs and parameter change are included in the model.

The objective of this work is to present a case where by
using the proposed method simple solutions for detecting
load change in a motor-generator plant can be developed.
One of the major advantages of INFUMO identification is
that arbitrary excitation signals can be used. Optimiza-
tion convergence problems that might arise either from too
many parameters or from a vast amount of data were solved
by implementing a simple data-reduction method, and low-
pass filtering [13].

The paper is organized in the following way. In Section 2
the preliminaries of interval arithmetics, the background of
fuzzy modelling, the main idea of interval fuzzy model iden-
tification using l∞-norm, and the residual formation with a
fault-diagnostic scenario are described. Section 3 presents
the motor-generator plant that was used as a system with
uncertain parameters, and the application to load-change
detection with data pre-processing and low-pass filtering is
introduced. In the final part, some outlines of future work
are given.

II. Using the fuzzy interval model in fault
detection

In this section the INFUMO will be introduced in a fault-
detection system for a class of processes with interval-type
parameters.

A. Preliminaries

A class of systems containing parameters described by
a set of bounded variables will be considered. A sys-
tem from this class has an output described by a domain,
which includes all possible normal behaviours. Interval
arithmetic is used to describe the whole continuous range
of behaviours represented by an interval model. Let x
be a real value that can be found in the bounded space
S(x) = [x, x] = {x ∈ R, x ≤ x ≤ x}. If f(x) is a con-
tinuous and differentiable function, S(f(x)) is a natural



extension of the function [1], [7] described as

S (f(x)) =

[
inf

x∈F(x)
(f(x)) sup

x∈F(x)

(f(x))

]
(1)

Let the process output be given as follows:

y(t) = G(p)u(t) + GD(p)d(t) + n(t) (2)

where p denotes the forward shift operator, G(p) the pro-
cess transfer function, d(t) is a vector of disturbances,
GD(p) the unknown disturbance transfer function, and
n(t) ∈ [n, n] denotes a bounded parameter from the space
S. Using Eq. (1), the boundary output functions can be
described as

y(t) = f(u, d, t, n) ∈ S(
y(n(t))

)

y(t) = f(u, d, t, n) ∈ S(
y(n(t))

) (3)

As a consequence, a confidence band of outputs guarantees
that a process output exhibiting normal behaviour is found
in the interval

[
y, y

]
. However, due to the unknown effect

of disturbances the exact bounds cannot be defined analyt-
ically. In [7] two approaches to determine the parameter-
uncertainty values have been proposed: empirical and nu-
merical. In the first approach, physical knowledge of the
uncertainties is used to adjust its values in the model. The
second approach consists of using a constrained linear op-
timization technique to minimize the model precision ob-
jective function J = 1/N

∑N
k=1(yi − y

i
). The proposed

approach, introducing the interval fuzzy model, is quali-
tatively different because the boundary responses will be
obtained by a fuzzy function approximation of the bounds
of a set of input-output data that already comprises the
effect of disturbances.

B. Derivation of an interval fuzzy model

The derivation of an interval fuzzy model can be roughly
divided into the following stages: applying a fuzzy model in
Takagi-Sugeno form [16], interval identification using l∞-
norm and obtaining an interval fuzzy model using partial
linear programming. A short description of all the stages
will be given next. A more detailed insight can be found
in [18].

A static fuzzy TS-type model in affine form can be given
as a set of rules

Rj : if xp = Aj, then y = θT
j x, j = 1, . . . , m (4)

The variable xp denotes the input or variable in premise,
and variable y is the output of the model. The antecedent
variable is connected with m fuzzy sets Aj , and each fuzzy
set Aj (j = 1, . . . ,m) is associated with a real-valued func-
tion µAj (xp) : R → [0, 1], that produces a membership
grade of the variable xp with respect to the fuzzy set Aj .
The consequent vector is denoted xT = [x, 1]. As the out-
put functions are in affine form, 1 was added to the vector
x. The system output is a linear combination of the con-
sequent states, and θj is a vector of fuzzy parameters.

If the intersection of the fuzzy sets is previously defined,
the system in Eq. (4) can be described in closed form

y = βT (xp)Θx, (5)

where ΘT = [θ1, ..., θm] denotes a coefficient matrix for the
complete set of rules, and βT (xp) = [β1(xp), . . . , βm(xp)] is
a vector of normalized membership functions with elements
that indicate the degree of fulfilment of the respective rule.
Functions βj(xp) can be defined as

βj(xp) =
µAj (xp)∑m

j=1 µAj (xp)
, j = 1, . . . ,m, (6)

if the intersection of the fuzzy sets is defined as the triangu-
lar norm (T-norm) and if the partition of unity is assumed.
In our case a simple algebraic product was chosen as the
T-norm.

A model parameter estimation using l∞-norm as a crite-
rion for the measure of the modelling error will be consid-
ered next. Let C ⊂ R be a compact set and G = {g : C →
R} be a class of nonlinear functions. Let us assume that
there exist the exact upper bound g and the exact lower
bound g that satisfy the following conditions for each z and
an arbitrary ε > 0:

g(z) ≥ max
g∈G

g(z), ∃g ∈ G : g(z) < g(z) + ε (7)

g(z) ≤ max
g∈G

g(z), ∃g ∈ G : g(z) > g(z) + ε (8)

Obtaining the bounds in Eqs. (7) and (8) would re-
quire an infinite amount of data; however, in this case
we are limited to the finite set of measured output val-
ues Y = {y1, y2, . . . , yN} and the finite set of input data
Z = {z1, z2, . . . , zN}:

yi = g(zi), g ∈ G, z ∈ C ⊂ R, yi ∈ R, i = 1, . . . , N (9)

Therefore, the upper and the lower boundary functions are
approximated by fuzzy functions in the form given in Eq.
(5). According to the Stone-Weierstrass Theorem [12], [19],
there exists a fuzzy system f such that

max
zi∈Z

|f(zi)− g(zi)| < ε, ∀i, (10)

i.e., a fuzzy function can approximate an arbitrary function
g ∈ G with any desired degree of accuracy for any ε.

To estimate the optimal parameters of the proposed
fuzzy function the minimization of the maximum modelling
error

max
zi∈Z

|yi − f (zi)| = max
zi∈Z

∣∣yi − βT (xp)Θx (zi)
∣∣ (11)

over the whole input set Z is performed. This implies the
min-max optimization method, and l∞-norm is used as the
modelling error measure. Note that the data are obtained
by sampling different functions from G with arbitrary val-
ues of z.



The idea of robust fuzzy interval modelling can be seen
as finding a lower fuzzy function f and an upper fuzzy
function f that satisfy the following condition:

f(zi) ≤ yi ≤ f(zi), ∀zi ∈ Z. (12)

The main requirement when defining the band is that it is
as narrow as possible, within the proposed constraints.

The upper and the lower fuzzy functions, respectively,
can be found by solving the following optimization prob-
lems for ∀i:

min
Θ

max
zi∈Z

∣∣yi − βT (xpi)Θx(zi)
∣∣ , if yi − βT (xpi)Θx(zi) ≥ 0,

min
Θ

max
zi∈Z

∣∣yi − βT (xpi)Θx(zi)
∣∣ , if yi − βT (xpi)Θx(zi) ≤ 0.

(13)

The solutions to both problems can be found by fuzzy lin-
ear programming, because both problems can be viewed
as linear programming problems. This brings simplicity to
the realization of the optimizing process. However, large
data sets and a large number of parameters will still pose
a threat to optimization convergence. In the first case we
approach the problem with data-reduction methods, and in
the latter case, on the other hand, we have to find solutions
to reduce the number of parameters.

C. Residual formation and diagnostic scenario

As was shown in [6], [9], all residual generators can be
designed by

r(t) = Q(p)
(
y(t)− ỹ(t)

)
, (14)

with ỹ(t) as an output estimation and Q(p) is a filter which
is free to design and enhances the residual robustness to
unknown process inputs. Combining Eq. (14) with Eq.
(13), the following relation can be written:

r(t) = Q(p)
(
y(t)− βT Θu(t)

)

= Q(p)y(t)−Q(p)βT Θu(t)

= yf (t)− βT Θuf (t)

(15)

where u(t) = [u(t) 1]T denotes the augmented input vector.
The main idea of the proposed approach is to filter both
the input and the output data, thus obtaining a confidence
band of filtered input-output data pairs, approximate the
band using the optimization procedure of the INFUMO,
and connect the INFUMO in parallel to the process to get
online estimations of the boundary outputs. For fault de-
tection, the decision function should consist of verifying
that each measurement belongs to the corresponding con-
fidence band. In order to provide quantitative information
about the proximity of the measurements to the closest
interval bound, distances were used, as presented in [7].

If a filtered output value yf (t) belongs to an interval[
y

f
(t), yf (t)

]
, and if the mean interval value is denoted

ŷf (t), the proposed distance is defined in the following way:

if yf (t) < ŷf (t), d(yf ) =
yf (t)− ŷf (t)
y

f
(t)− ŷf (t)

if yf (t) > ŷf (t), d(yf ) =
yf (t)− ŷf (t)
yf (t)− ŷf (t)

(16)

The distance in (16) is zero when the measurement is equal
to ŷf , and approaches the value 1 if the measurement is
close to one of the interval bounds. A fault is signalled ev-
ery time d(yf ) exceeds the value 1. Fig. 1 gives a schematic
representation of the proposed fault-detection system. The
filter Q(p) is represented by a block denoted LPF, and the
distance is calculated in the DIST block.

PROCESS

INFUMO
MODEL

LPF LPF

ypu

yf

yf

uf

DIST

d(y )f

yf

Fig. 1. Fault-detection system using static INFUMO model

III. Application of Infumo in the fault
detection of a motor-generator plant

In this section the application of the INFUMO in the
robust identification and fault detection (FD) of a process
from a class of systems with uncertain and interval-type
parameters will be presented.

The electromechanical process consists of 2 DC motors,
mounted facing each other, as shown in Fig. 2. The driv-
ing shafts are rigidly coupled. The left motor, marked as
’G’, is the load of the motor ’M’ when operating in gener-
ator mode. Applying a negative voltage to the generator
produces mechanical torque and results in a shift of the
operating conditions. The system output is the voltage ob-
tained by a tacho generator, mounted to the shaft, that
converts the rotary speed to a DC-voltage output signal.
um and ug are the input voltages for the excitation and
the load, respectively. The signals are connected through
an AD/DA converter to a PC. The plant setup enables one
to control the shaft speed by changing the motor’s input
voltage.

The process parameters are uncertain. If consecutive
open-loop experiments on identical input signals are per-
formed, the output responses will form a set of different
trajectories rather than a single one. One of the reasons
for such behavior is that the system performance depends
on the operating temperature.

Experiments show that load values ranging from ug = 0
V to ug = −0.05 V do not shift the operating conditions
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Fig. 2. Schematic representation of the motor-generator plant

substantially. Hence, the confidence load interval was de-
fined as [−0.05, 0] V. With reference to the given INFUMO
identification procedure, a confidence band of input-output
data must be defined. This band will represent the most
significant operating range of the plant and also include
all unexpected deviations due to parameter uncertainties.
A set of 30 experiments was carried out, i.e., 5 series of
6 identification signals at load voltages from the lowest to
the highest value in 0.01 V steps. The inputs and associ-
ated output signals are shown in Fig. 3. For the sake of
brevity, only the first, the second, and the last data sets
are presented.
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Fig. 3. Inputs and outputs: the first, the second, and the last exper-
iment

One of the major benefits of the interval fuzzy model
identification, shown in Fig. 3, is that the input signals
can be arbitrary. Normally, to get a confidence band of
measurements, it would be necessaray for the experiments
to be conducted with identical excitation signals. Our idea,
however, was to create a model based on data acquired from

experiments on unequal signals.
According to Eq. 14, the input and output signals are

subjected to low-pass filtering. The structure of the LPF
was chosen as a simple first-order system, represented by
the transfer function in Eq. (17)

Gf =
1

Tfs + 1
(17)

Optimal design of the LPF time constant was not consid-
ered in this study. The cut-off frequency must be chosen
to be low enough to let only slowly changing signals prop-
agate through the filter. As this directly affects the choice
of the time constant, a compromise has to be made in or-
der that the system response is not too slow. Hence, it
was chosen as Tf = 30 s. This way a compact set of mea-
surements that represents steady-state system behaviour is
obtained. It can be seen as a load-dependent static input-
output mapping area.
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Fig. 4. Set of filtered input-output data with boundary points and
boundary INFUMO functions

The total number of points gathered from the identifica-
tion experiments was 83700. Performing the optimization
on the given data set would be extremely time consuming.
Therefore, data reduction is performed by determining the
boundary points. Firstly, the range of input measurements
is divided into equidistant subspaces. The length of the
step is chosen according to the subspace with the highest
density of data. In each subspace the extremal points are
determined. The input-output data is presented in Fig. 4,
and the resulting set of 302 boundary points is emphasized.
These data will be used as the training data set for the IN-
FUMO identification. A static INFUMO can be employed.
This brings an additional reduction of fuzzy parameters to
be optimized. The membership functions of the INFUMO
antecedent variables were arranged using the Gustafson-
Kessel clustering method [2]. According to the shape of
the data area, it was sufficient to use 6 fuzzy subsets for
the upper and lower fuzzy functions.



The parameters were optimized using the proposed IN-
FUMO optimization algorithm in Eq. 13. The resulting
boundary functions can be seen in Fig. 4. It is evident
that the min-max optimization gave satisfactory results in
approximating the given area.

To realize a fault-detection system, INFUMO is con-
nected to the process in parallel, as shown in Fig. 1. In
the test experiment the load signal was a combination of
ramps that is outside the load band in the time period
Tft = 160− 330 s. It is presented in Fig. 5 along with the
input test signal and the corresponding process output sig-
nal. In the first 140 seconds the input signal was constant,
so the operating conditions were met. The results of the
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Fig. 5. Test experiment signals

test run can be seen from Fig. 6. It is evident that the
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Fig. 6. Results of the fault detection system

proposed FD system successfully tracks the load crossing
of the permitted band. The FD output is higher than the
one in the shaded area, denoted ’Load boundary crossing’,
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Fig. 7. Results of simulation with variable load

with a time delay, depending on the time constant of the
proposed low-pass filter. On one occasion the alarm was
not called correspondingly to the load value; this will be
discussed with reference to Fig. 7, which displays time-
dependent courses of the filtered process output and the
INFUMO tolerance band. It can be seen that during the
transient the filtered process output crossed the boundary
area for a short period of time. It can be concluded that in
this case fault prediction was not certain due to the effect
of plant unmodelled dynamics. One way of reducing this
uncertainty would be to find optimal structure and param-
eters of the applied filter, but that was not considered in
this work.

Fig. 8 shows the actual view of fault detection from the
INFUMO static model perspective. It can be clearly seen
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Fig. 8. Results of fault detection system in static conditions

in Fig. 8 that when the load value is below the negative
limit, the filtered response abandons the tolerance band.



In addition, the above-mentioned case of false-error esti-
mation can be clearly noted.

IV. Conclusion

A novel approach of interval fuzzy model identification
has been applied in fault detection. The interval fuzzy
model (INFUMO) was derived using the l∞-norm function
approximation. It was shown that the INFUMO enables
the confining of an arbitrary nonlinear confidence band
with an upper and lower fuzzy function. It is therefore
suitable for the identification of systems with uncertain pa-
rameters, as all the system responses in the given interval
of uncertainty can be found in the confidence band with
a certainty of 1. The benefit in fault detection is to be
able to directly model a family of interval-type parameter
systems, which guarantees fault-tolerant action.

An application involving the load-change detection of a
motor-generator pilot plant was presented. To get a confi-
dence band of system responses, a large number of experi-
ments was carried out, which resulted in a huge set of data.
The problem of data reduction was dealt with by filtering
the input and output signals using a low-pass filter. The
resulting major benefits were the possibility of using arbi-
trary input signals and the simplicity of the fuzzy static
model that was used. The boundary points of the gath-
ered data set were determined using a simple algorithm
and used as a training data set for identification by linear
programming. Connecting the INFUMO to the process in
parallel and employing an online calculation of the normal-
ized distance of the filtered process output from the nearest
bound, the proposed approach was proven to be successful
in detecting unwanted load changes.

Future work will concentrate on an optimization of the
filter parameters, investigating the performance resulting
from different choices of filter structure, and investigating
possible extensions to frequency-based methods and fault-
tolerant control.
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