
Optimisation of Timing Properties in a Platform Independent Manner  

Abstract 
Large-scale complex embedded systems pose unique 

problems. To reduce overall development times, there is a 
need to develop the system in a concurrent fashion, 
involving the development and verification of software at 
the same time as designing, building and verifying the 
hardware. This requires a two-phase trade-off analysis 
approach to the hardware software co-design problem. The 
first phase is platform independent: it allows system 
requirements to be met and also supports other important 
objectives, e.g. scalability, upgradeability. The results of the 
first phase include deriving requirements and design 
constraints placed on the platform dependent phase (eg. 
resource budgets including time). The second, platform 
dependent phase, chooses the actual software and hardware 
implementation that satisfies the requirements derived in 
phase 1. This paper addresses the first part of the problem 
through trade-off analysis. This establishes the design 
decisions in a traceable manner whilst capturing the 
rationale and assumptions made. It then searches the design 
space for the solution that best meets the system s 
objectives. The approach has been developed for the needs 
of critical systems and has already been applied to the 
logical design of systems. 

1 Introduction 

Large-scale embedded systems, such as those found in 
aerospace applications, are characterised by their functional 
complexity, size (in terms of required software / hardware), 
relatively long lifecycles and requirement for validation and 
verification of their fitness for purpose prior to deployment 
[1]. Often in large systems, the unit cost of hardware is not 
an overriding concern 

 

the relatively few units made mean 
one-off development costs are the prime cost consideration. 

Conventional development processes for systems contain 
an early hard partitioning of system functionality between 
hardware and software. It is performed with minimal use of 
trade-off techniques, but instead relying on high-level 
systems engineering principles [2]. Essentially, a best 
guess is made when functions are partitioned between 
hardware and software. Invariably an underestimate of the 
amount of software is made (hence the computing platform 
is under resourced).  

One consequence of the development process is that 
hardware is developed in isolation from software, usually 
prior to software development (due to the long lead times 
for custom hardware or as yet unavailable hardware) and 
only later are they integrated. A critical problem occurs 
when / if additional functions are identified after system 
partitioning, these are usually pushed into software as the 
hardware is fixed. The hardware is considered fixed as it is 
expensive to redevelop the hardware to cope with either 
additional functions or to provide increased computing 
resource for the software components.  

Codesign [6] recognises that systems implement required 
functions using a mixture of hardware and software 
components. Trade-offs can be explored between the choice 
of whether system functionality is implemented in hardware 
or software. Given a partitioning of functionality into 
hardware and software components, design / synthesis of 
hardware and software can proceed in parallel. 
Subsequently, the separate hardware and software are 
integrated to form the final system. A key element of the co-

design process is that alternatives for the hardware / 
software partitioning are evaluated. 

For this approach to be successful, it is important that 
requirements are established for properties and operations 
across the system s boundaries (e.g. between hardware and 
software). These requirements are referred to as interface 
requirements. The interface requirements allow change to 
be managed such that two distinctly different parts of the 
design can be developed in separation. To reduce the impact 
of changes (i.e. allow the designs to proceed in relative 
isolation), the content of the interface requirements should 
be chosen so that not only are the initial design objectives 
met but there is flexibility within the design to support 
change. The use of interface requirements and reducing the 
impact of change also allows some level of analysis, albeit 
with inaccuracies, when only scant or approximate design 
data is available earlier on in a project. 

It should be noted that managed change is considered to 
be a secondary quality attribute of the system, i.e. it is not 
considered essential to the system s operation. Primary 
quality attributes are those essential to the system s 
operation. An example of a primary quality attribute is the 
meeting of timing requirements in hard real-time systems. 

In the timing domain an example of an interface 
requirement is a set of timing budgets (e.g. Worst-Case 
Execution Times (WCET)) and attributes (e.g. offsets and 
priorities) for the tasks that if met lead to the system s 
timing requirements being met. To support managed change 
the timing budgets and timing attributes should be chosen so 
that the scalability and flexibility of the system is improved. 
An example of scalability is the ability to add additional 
tasks into a system without preventing the existing tasks 
from meeting their timing requirements. 

A key issue when defining any part of the system, eg. 
timing budgets, is the trade-offs between different 
objectives of the system. For example, having larger 
budgets may mean the software can be developed cheaper 
because it doesn t have to be optimised as much. However 
larger budgets would make the design of the hardware more 
difficult in that it needs greater optimisation for the 
particular application or leads to the use of more powerful 
(and hence expensive 

 

expensive can be in terms of cost, 
power etc) hardware components. The tensions between 
different objectives need to be traded off during the design 
process. 

Once the interface requirements have been established, 
both hardware and software should be designed so that these 
interface requirements are upheld on both sides of the 
interface. This second phase of the trade-off analysis 
problem is not addressed in this paper. The budgets derived 
should be appropriately proportioned where possible. That 
is, there should be a significant penalty in giving a smaller 
budget to a larger/more complex piece of functionality 
unless other factors mean it is better to spend more time and 
money on a particular part of the system. Other work has 
shown how such budgets can be used to support the 
development of large systems where portability between 
hardware platforms is a key success criterion [8]. 

This paper contends that important benefits arise by 
embedding a co-design process as a sub-process within the 
conventional system development process. This enables 
early partitioning of functions whilst still allowing functions 
identified later to be subject to a co-design process.  

To support this approach, three main requirements must 



be met: 
1. The structured capture of design choices, definition of 

system objectives and design information for later use 
in the co-design process or as part of design 
certification. 

2. As part of the early partitioning, resource is reserved 
for future functions. 

3. The specification of timing properties such as offset, 
WCET and Best-Case Execution Time (BCET) budgets 
etc that allow the systems timing requirements to be 
met. These properties are shown to be met at integration 
time. 

The contributions of this paper are: 
1. The application of the trade-off analysis to the problem 

of timing in the development of systems in order to 
capture the design choices and the assessment criteria 
designs are judged against; 

2. The use and derivation of interface requirements 
between the software and underlying platform to help 
manage complexity; 

3. The use of scenario-based analysis to assess secondary 
quality attributes, such as scalability, in conjunction 
with traditional timing analysis to assess primary 
quality attributes, such as whether timing requirements 
are met. 

The trade-off analysis method is summarised in section 2. 
Item (1) from the list is presented in section 3. Section 4 
discusses the differing requirements and relationship with 
other methods. Section 5 of this paper presents our 
framework for determining the optimum design solutions to 
satisfy items (2) and (3) from the list. The approach is 
evaluated in section 6. 

2 Overview of Design Trade-Off Analysis 
Method 

In [5] our method for architectural trade-off analysis for 
use within a systems engineering process was presented. It 
should be noted that [5] applies the same method in this 
paper but to the problem of the logical design systems. The 
trade-off analysis together with the inserted co-design 
process has the following properties: 

 

Derivation of choices 

 

identifies where different 
design solutions are available for satisfying a goal.  

 

Manage sensitivities 

 

identifies dependencies between 
components and design decisions. 

 

Evaluation of options 

 

allows evaluation of alternative 
solutions against required properties / specification. 

 

Influence on the design 

 

identifies constraints on how 
components should be designed to support the meeting 
of the system s overall objectives. 

 

Collection of design rationale 

 

forms a repository for 
design decisions to aid traceability throughout the 
design. 

The proposed approach could be used within the nine-step 
process of the Architecture Trade-Off Analysis Method 
(ATAM) [3]. The key difference between our strategy and 
other existing approaches, e.g. ATAM, is the way in which 
quality attributes are derived. (Quality attributes are 
assessment criteria used to evaluate solutions, e.g. does the 
design support predictability?) Our proposed approach was 
chosen due to the following reasons. 

 

The techniques used in our approach are already 
accepted and widely used. 

 

The techniques offer strong traceability and the ability 
to capture design rationale. 

 
Information generated from their original intended use 
can be reused, rather than repeating the effort. 

 
The method is equally intended as a design technique to 
assist in the evaluation of the architectural design and 
implementation strategy as it is for evaluating a design 
at particular fixed stages of the process. 

Figure 1 provides a diagrammatic overview of the 
proposed method. Stage (1) of the trade-off analysis method 
is producing a model of the system to be assessed. This 
model should be decomposed to a uniform level of 
abstraction. Currently our work uses class diagrams from 
UML for this purpose; however it could be applied to any 
modelling approach that clearly identifies components and 
the interfaces between the components. 

In stage (2), the key objectives and properties of the 
system are decomposed into detailed design requirements 
that need to be satisfied. Rationale for these detailed 
requirements is encapsulated by structured arguments, along 
with the appropriate context, identifying where design 
choices are available. The arguments are structured using 
Goal Structuring Notation (GSN) [4].  

Key properties of interest include: lifecycle cost, 
dependability, and maintainability. Clearly these properties 
can be broken down further, e.g. lifecycle cost into 
development, future upgrades and maintenance. Objectives 
of interest include; managed change, ease of integration and 
ease of verification. 

Stage (3) uses the structured argument to further derive 
design and verification options, and to determine assessment 
criteria to judge how well a particular design solution meets 
the system objectives. Other approaches for deriving 
assessment criteria from systems objectives include Goal 
Question Metrics (GQM) [12]. Initially in the early stages of 
design, the evaluation may have to be qualitative in nature 
but as the design is refined then quantitative assessment may 
be used where appropriate. Part of this activity may use 
representative scenarios to evaluate the solutions. In the case 
of timing, representative scenarios will include situations 
where the software/system is changed which leads to 
modified task execution times and added/removed tasks.  
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Figure 1 - Overview of the Method 
Before stage (4) of the process, based on the findings of 



stage (3) the design is modified to fix any problems that are 
identified 

 
this may require stages (1)-(3) to be repeated to 

show how the revised design is appropriate. When deciding 
on design solutions, the results from more than one 
assessment criteria have to be traded-off because a design 
modification that suits one assessment criterion may not suit 
another. For example, introducing an extra processor may 
reduce the load across the processors in the system making 
task schedulability easier. However it may increase the load 
on the communications bus making message schedulability 
more difficult and increasing power consumption. 

When the design modification process is complete and all 
necessary design choices have been made, stage 4(a) of the 
process extracts interface requirements from the arguments. 
Then, as part of stage 4(b) of the process, the process 
returns to stage (1) where the system is decomposed to the 
next level of abstraction using guidance from the arguments. 
Components reused from another context could be 
incorporated as part of the decomposition. Only proceeding 
when design choices are complete (and any identified 
problems are fixed) is preferred to allowing trade-offs 
across components at different stages of decomposition 
because the abstractions and assumptions are consistent. 

In this paper the refinement of the design (stage (4) of the 
process) is performed automatically using multi-criteria 
optimisation. Automatic optimisation is possible in this case 
because the assessment criteria can be analysed for in a 
quantitative fashion by tools based on static analysis and 
scenario-based assessment. Other than reducing the 
workload of engineers, another advantage of automatic 
optimisation techniques is their ability to trade-off the needs 
of different assessment criteria and balances any tensions 
between different system properties. There has been some 
previous research into the topology of optimisation 
algorithms including the use of optimisation for the software 
allocation problem, for further details refer to [11]. 

3 Application of Trade-Off Analysis 

A key part of architecture trade-off analysis is deriving the 
top-level properties and objectives (i.e. goal) for the systems 
such that arguments can be produced that systematically 
break them down to lower-level goals. These goals are then 
used to form assessment criteria that can be used to judge 
whether a proposed solution is appropriate. During the 
production of these arguments, choices of how they can be 
supported (e.g. implement in hardware or software) will 
emerge and assumptions identified. (The assumptions are 
important when trying to reuse designs since they allow the 
basis for the existing components design to be evaluated in 
the new context.) The following section proposes some 
properties for use in derivation of the interface requirements 
that later are developed into arguments that can be used. 

3.1 Key Properties 

The following objectives are considered as being 
important. It should be noted that most objectives are 
derived from the overarching objective of maximising profit 
in some way. 

 

Correctness 

 

using appropriate verification techniques 
sufficient evidence needs to be gathered that what is 
being produced meets its requirements. Sufficient is 
dependent on the nature of the application, for example 
it would be expected in critical systems development 
that more evidence is needed than for non-critical 
systems. In general, hardware development is 
considered to have verification techniques that can 

provide stronger evidence for correctness. 

 
Managed change 

 
the system produced should be 

changeable or upgradeable in an efficient manner. For 
most applications, typical change patterns or potential 
upgrades can be predicted with reasonable confidence. 
For some applications, there are known killer changes 
that are likely to occur and result in significant re-
design effort being needed. In general, software is 
considered easier to change but as Ariane 501 
demonstrated the assumptions that exist within the 
design and implementation of a component being 
reused are not always handled appropriately. 

 

Efficiency 

 

the system produced should make the best 
use of the available resources. The efficiency of a 
technology is strongly dependent on the nature of the 
technology. For instance, a FPGA is an effective means 
(in terms of the amount of silicon used is small) of 
implementing logic such as found in Statecharts but 
may not be as effective at implementing floating point 
operations. 

 

Sufficiency 

 

the technology used in the implementation 
must be able to represent the design. There are many 
factors here. Considering just timing, 

o Von Neumann architectures are often 
considered to have the benefit of providing raw 
processing power, however for applications where 
hard real-time guarantees are needed the difficulty in 
modelling modern Von Neumann processors can 
lead to large amounts of pessimism in the analysis 
that reduces/eliminates the benefits [14]. 

o FPGAs are better at handling concurrency [7]. 
o FPGAs have little or no difference between 

their best, average and worst-case performance 
whereas Von Neumann do [7]. Variability in timing 
behaviour makes many applications, e.g. control 
systems, harder to produce [7]. 

The rest of this paper considers sufficiency and its 
relationship to architectural design in greater detail. 

4 Relationship with Existing Methods 

There are a wide variety of existing methods for deriving 
interface requirements between hardware and software and 
then exploring the search space. These methods have 
differing capabilities. For an overview of these refer to [6]. 
The approach being developed within this paper is different 
for a number of reasons that originate from the need to 
support large-scale complex systems that take many years to 
develop. The main differences are: 

 

The need for flexibility to account for incomplete 
specifications and changing designs. Hence the design 
derived should be able to handle change and not just 
meet the current requirements. 

 

The need to be able to tolerate failures. 

 

The need to be able to partition up parts of the design, 
e.g. individual sub-systems or processors, so that 
individual suppliers can work in isolation. This also 
means that the partitioning and allocation needs to be 
flexible otherwise a constant re-negotiation would be 
needed between suppliers and customer which would 
be expensive. 

 

The need to defer the choice of implementation solution 
with respect to hardware and software. For this reason a 
two stage process is proposed that produces an 
allocation and assigns properties to the system but the 
final implementation details is not decided. For this 
reason interface requirements are established between 



the two phases. In the case of timing, these interface 
requirements are in the form of timing budgets. 

The following section describes the framework we have 
been developing for the timing aspects of phase 1 of the 
process. Current plans is to use the constraints and interface 
requirements derived from phase 1 to drive phase 2 of the 
process which could be based on an existing technique. 

5 Co-simulation and Optimisation 

5.1 Cost Function 
Stage 4 of the design assessment is exploring the available 

design solutions for the combination that best meet the 
system s objectives. From timing perspective analyses need 
to be performed to demonstrate the following: 
1. Normal (showing timing requirements are met). 
2. Determining how the task set copes with extra tasks 

being added and changing execution times (WCET and 
BCET).  

3. Tasks have low jitter. 
4. Scheduling is fault tolerant, i.e. some tasks execution 

can be repeated, in case of failure, without affecting the 
ability to meet timing requirements. 

For the purposes of this work, it is assumed that no re-
allocation of tasks to processors or change to the budgets is 
made when the nature of the task set changes or when a 
fault occurs. Instead it is expected that the assignment 
derived for the task attributes and budgets can cope with the 
changes or failures. It should be noted that this does not 
preclude the use of replication to also provide fault 
tolerance. In cases where changes to the task set leads to the 
requirements being met, then it would be expected that a re-
allocation and re-assignment of budgets would then be 
performed. 

Since the assessment is to be performed in a platform 
dependent manner, actual WCETs and BCETs are not 
known. Therefore budgets are to be derived for WCETs and 
BCETs. However rather than generate completely abstract 
and infeasible budgets, some control is provided by one of 
the assessment criteria being whether the budget is broadly 
in line with an estimate. This estimate is found by a 
combination of; whether the relative budgets between tasks 
is comparative to the tasks execution times on another 
platform, and whether the budgets are comparative to the 
tasks size and complexity. Later in the development of the 
system, the estimates could be obtained by analyzing or 
measuring each task s actual execution time. Using these 
estimates though do not prohibit a set of budgets being 
derived that mean particular tasks need more effort and 
optimisation to meet their budgets if it provides enough 
benefits in other areas. 

The optimisation was performed using a simulated 
annealing algorithm and a cost function whose parameters 
(e.g. parameters) are described in Table 1. 

Assessment Criteria Weighting

 

Bonus 
Factor 

Penalty 
Factor 

Individual task schedulability 500 per task

 

5 5 
Multiple task schedulability 500 per 

dependency

 

5 5 

Number of processors > 1 10000 N/A N/A 
Task fault tolerance 100 N/A N/A 
Task execution variability 20 N/A N/A 
Relative size 2 N/A N/A 
Task scalability 10 N/A N/A 
Execution scalability 10 N/A N/A 

Table 1  Weightings for Each Assessment Criteria 

The simulated annealing algorithm is chosen rather than 
standard static search techniques due to its ability to scale to 

large systems [13]. It is chosen over other heuristic search 
techniques due to its ability in finding good solutions 
assuming it does not get stuck in a local minimum [13]. To 
prevent this, if a best solution is not found after a defined 
number of moves, then the algorithm is re-seeded with a 
completely new solution. Section 5.2 contains further details 
of the algorithms. 

The table has four columns; the first being the assessment 
criteria, the second the standard weighting (found through 
evaluation) used for the scoring mechanism and evaluation 
method presented in later in this section, the third a bonus 
factor used in cases such as when all the assessed timing 
requirements are met, and the fourth a penalty for when all 
the assessed timing requirements are not met. 

The results of the analysis are converted to a score that 
can be used in the cost function by the following means: 
1. Individual task schedulability: for each task that is 

schedulable (i.e. meets its requirements) a score of +1 is 
given and for each unschedulable task a score of 

 

PENALTY is given (e.g. PENALTY is equal to +5). If 
all tasks are schedulable, then the final result is 
multiplied by a bonus factor (e.g. +5) to bias the results 
in favour of a completely schedulable solution. 

2. Multiple task schedulability: for each requirement met 
a score of +1 is given and for each requirement not met 
a score of 

 

PENALTY

 

is given. Again if all 
requirements are met, then a bonus factor is applied to 
the result. 

3. Task fault tolerance: +1 for each task that is re-
runnable without affecting the ability to meet timing 
requirements. 

4. Task execution variability: -1 for every clock tick that 
each task s WCET is greater than its BCET, i.e. sum for 
all tasks of (WCET-BCET). 

5. Number of processors: -1 for every processor in the 
system greater than one. The reason for every processor 
greater than one being used is that we can t avoid 
having one processor. 

6. Relative size: relationship between two tasks 
estimated WCET (EWCET), which is approximated via 
metrics or transformation of WCETs from other 
processors, and their budgeted WCET. That is, 

i j

j

i

j

i

WCET

WCET
EWCET

EWCET 

where i, j are individual tasks in the task set 
The aim of relative size is to indicate that the tasks 
WCET budgets are in line with their estimated WCET. 

7. Execution scalability: +1 for every clock tick that 
each task s WCET is greater than its EWCET, i.e. sum 
for all tasks of (WCET-EWCET). To penalise WCET 
budgets being assigned that are smaller than the 
estimated WCET, a score of 10 for every clock tick 
that each task s WCET is less than its EWCET, i.e. sum 
for all tasks of (WCET-EWCET). 

8. Task scalability: +1 for every extra randomly 
generated task that can be added to the task set without 
affecting the ability to meet the system s requirements. 

5.2 Searching the Design Space 

The simulated annealing algorithm used in our work can 
be described by the following pseudo-code. The pseudo-
code features re-seeding which is used to prevent the 
solution getting trapped in part of the search space.  



randomly generate an initial model 

loop for each temperature(T) 

 
if improved solution not found after N moves 

  
re-seed solution with completely new solution 

 
loop for number of times inv prop to T 

  
select new model 

  
move to new model 

  
calculate cost function elementsfunctiont

scoreweightings
cos 

  
if new model has higher cost value 

   

adopt it 

  

else 

   

draw random number 

   

decide whether to adopt it 

 

end random moves loop 

end temperature loop 

 

A new model is found by modifying the current model 
of the system in a randomly selected way from a number of 
ways. Modifying the current model is equivalent to using a 
new design tactic as discussed in [10]. Examples of 
design tactics are the use of a technique such as fixed 
priority scheduling. The following is a list of ways in which 
the current solution is modified in the simulated annealing 
algorithm.  
Processor level  for randomly chosen task or message 
1. Execution times (worst and best-case) 

 

increase, 
decrease or random. 

2. Ordering  increase, decrease or random. 
3. Offset  increase, decrease or random. 
4. Release jitter  increase, decrease or random. 
System-Level 
1. Task allocation 

 

move a randomly chosen task 
between processors. This could lead to the addition of a 
new processor. 

2. Processor  remove a processor from the system. 

6 Evaluation 

The evaluation presented in this section is intended to 
show how the framework uses a set of requirements and an 
estimated WCET to generate what it considers the best 
solution. To demonstrate the way the framework operates in 
the available space, a small example with few tasks is 
chosen. However other work we have performed has shown 
that the approach is equally applicable to large-scale 
systems. In addition, a great deal of other work, including 
[11], has shown heuristic search algorithms can handle the 
scalability to allocating tasks for large systems. 

For the purposes of the example considered the Fixed 
Priority Scheduling approach is used [9]. However the 
theory developed can be applied to other scheduling 
approaches or even to decide between scheduling 
approaches for a particular problem. The priorities are 
initially derived according to the deadline monotonic 
priority ordering [9] where the tasks with the shortest 
deadline have the highest priority. In this case where tasks 
have an equal deadline an arbitrary decision is taken on 
which has the highest priority. 

The example consists of 10 tasks with initial resource 
utilization (equal to the sum for all tasks of EWCET/Period) 
of 1.70 

 

initial resource estimate is based on the estimated 
WCETs). The tasks have 2 dependency requirements of 

which one is a separation requirement and one is a 
transaction requirement. The requirements and initial 
attributes are depicted in the following tables. Table 2 gives 
the individual task requirements and attributes. Table 3 
gives the requirements for multiple tasks. 

Id Perio
d (T)

 
Deadline 

(D) 
EWCET

 
Jitte

r 
Req

 
Priority (P) 

0 90 40 19 N/A

 
3 

1 80 70 15 N/A

 
6 

2 100 100 20 N/A

 
10 

3 90 80 18 N/A

 
7 

4 70 60 11 N/A

 

5 
5 70 20 10 N/A

 

1 
6 70 50 14 N/A

 

4 
7 70 30 13 N/A

 

2 
8 100 80 11 N/A

 

8 
9 100 80 11 N/A

 

9 
Resource Utilisation 1.70 

Table 2 - Task Requirements and Initial Attributes 

Precedence

 

Id

 

Type 1st

 

Task

 

2nd

 

Task

 

Min. Separation 
Requirement (S)

 

End-to-End 
Deadline (TD)

 

0

 

Separation

 

6 7 2 N/A 
1

 

Transaction

 

8 9 N/A 90 

Table 3 - Task Dependency Requirements 

For the given example, Table 1 shows the weightings that 
were used in the context of this specific system. Table 1 
shows that the greatest emphasis is given to ensuring task 
requirements are met (both individual tasks and 
dependencies between tasks) and to reducing the number of 
processors within the system. (It should be noted that some 
of the assessment produces outputs of markedly different 
quantities.) For example, the degree of variability in 
execution time (measured in clock ticks) between a task s 
WCET and BCET added up for all tasks is likely to be 
significantly greater than the number of processors (in 
addition to the minimum of one) used. 

Id

 

T D EWCET

 

BCET

 

WCET

 

A

 

O

 

RJ

 

P R

 

0

 

90

 

40 19 14 20 0

 

3

 

1 3 34

 

1

 

80

 

70 15 20 20 2

 

4

 

0 6 50

 

2

 

100

 

100

 

20 20 20 0

 

4

 

3 10 77

 

3

 

90

 

80 18 17 20 0

 

5

 

4 7 59

 

4

 

70

 

60 11 11 11 2

 

11

 

1 5 38

 

5

 

70

 

20 10 9 10 0

 

4

 

0 1 14

 

6

 

70

 

50 14 8 15 2

 

2

 

2 4 19

 

7

 

70

 

30 13 19 19 1

 

4

 

3 2 26

 

8

 

100

 

80 11 12 13 1

 

8

 

3 8 43

 

9

 

100

 

80 11 19 20 1

 

9

 

2 9 63

 

Resource Utilisation 2.01 
Resource Utilisation for Processor 0 78.7 
Resource Utilisation for Processor 1 60.1 
Resource Utilisation for Processor 2 62.1 

Table 4 - Task Schedulability Results 

The results of the analysis are presented in Table 4 and 
Table 5. In Table 4, R represents the Worst-Case Response 
Time (WCRT), A the processor to which a task is allocated, 
O the offset for a task, and RJ the release jitter for a task. 

Precedence

 

Id

 

1st Task

 

2nd Task

 

S TD

 

Actual Separation

 

WCRT

 

0

 

6 7 2 N/A

 

7 N/A 
1

 

8 9 N/A

 

90 N/A 55 

Table 5 - Task Dependency Results 

The following is a discussion of the solution found with 
respect to each assessment criteria. 



 
Individual task schedulability 

 
All the 

individual tasks are schedulable so a maximum score is 
achieved here. 

 
Multiple task schedulability - All the task 

dependency requirements are met so a maximum score 
is achieved here. It should be noted that the solution 
derived is such that the majority of the dependent tasks 
are situated on a single processor 

 
i.e. A=1. This 

makes schedulability easier as there are no time critical 
messages since separation requirements do not require 
messages 

 

Number of processors (greater than 1) - The 
results show that the solution found features three 
processors. Since the resource usage of the revised task 
set is greater than two and less than three, then three 
processors is the minimum number that can schedule 
the system. Therefore with respect to this criterion an 
optimum solution has been found. 

 

Task fault tolerance - The resource utilisation on 
each processor is well balanced which helps increase 
the likelihood that tasks can be executed for a second 
time in case of a failure being detected. For instance, 
Table 6 presents the schedulability analysis results for 
the situation where task 1 is re-executed due to an error. 
In this case all tasks are still schedulable. The results 
from the co-simulation did however show that not all 
cases of task failure and subsequent re-execution mean 
the entire task set remained schedulable. However in 
the majority of these cases, it was the lowest priority 
task on a particular processor that became 
unschedulable. 

 

Task execution variability 

 

The results indicate 
that the difference between the BCET and WCET is 
small (i.e. less than 25% difference) in most cases. The 
exception to this rule is the task with identifier 6 whose 
BCET is 8 and WCET is 15. 

 

Relative size 

 

The results indicate that the WCET 
budgets chosen are broadly inline with the EWCETs 
and in all cases the WCET budget is greater than the 
value of EWCET. 

 

Task scalability and execution scalability 

 

The 
resource utilisation on each processor is well balanced 
which helps increase the degree of scalability that is 
possible. 

Id

 

T D EWCET

 

BCET

 

WCET

 

A

 

O

 

RJ

 

P R 
0

 

90 40 19 14 20 0

 

3 1 3 34

 

1

 

80 70 15 20 20 2

 

4 0 6 70

 

2

 

100

 

100

 

20 20 20 0

 

4 3 10

 

77

 

3

 

90 80 18 17 20 0

 

5 4 7 59

 

4

 

70 60 11 11 11 2

 

11

 

1 5 38

 

5

 

70 20 10 9 10 0

 

4 0 1 14

 

6

 

70 50 14 8 15 2

 

2 2 4 19

 

7

 

70 30 13 19 19 1

 

4 3 2 26

 

8

 

100

 

80 11 12 13 1

 

8 3 8 43

 

9

 

100

 

80 11 19 20 1

 

9 2 9 63

 

Table 6  Fault Tolerance Schedulability Results 

7 Conclusions 

This work has shown how trade-offs in the timing aspects 
of how software can be mapped onto hardware can be 

handled. The approach made use of interface requirements 
between the hardware and software such that each of these 
design processes can be performed independently. Firstly, a 
number of design choices and assessment criteria were 
derived from the top-level objectives of the system using a 
systematic method that captures the rationale behind the 
design decisions in a traceable manner. Secondly, an 
experimental method for evaluating a particular design was 
produced that combined static analysis of the baseline 
system with scenario-based assessment of how the system 
may behave in the presence of change and failures. 

Using the design choices available and the experimental 
method, optimisation tactics were employed to determine 
the best solution to a particular problem. Given this best 
solution, the hardware and software can be development in 
relative independence. At integration time, it would have to 
be shown that the low-level platform design of the hardware 
is sufficient to meet the interface requirements for the 
software that has been developed. In cases where the 
interface requirements are not met, then a new solution 
would be to be found using the framework. 

Future work could include developing phase 2 of the 
process and incorporating other objectives such as power. 
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