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Binary Decoding of Concatenated Turbo Codes and
Space-Time Block Codes for Quaternary

Modulations

Abstract— Space-time block (STB) coding is one of the key
techniques used to combat fading in multi-antenna wireless
communications systems. STB coding provides diversity gain
while having a simple decoding. However, when further gains
are needed, an outer channel code has to be concatenated. Turbo
codes are channel codes that have been shown to perform close
to the Shannon limits in AWGN channels. Moreover, they have
a relatively low-complexity binary MAP decoding. However, this
complexity increases exponentially with the number of bitsper
symbol. In this paper, a system consisting on an outer turbo
code concatenated with a STB code is considered. A general
formulation for STB decoding based on a least squares criteria
is given in order to allow binary turbo decoding while using qua-
ternary modulations such as QPSK. This binary decoding results
in a higher global rate at no complexity cost. A normalization
algorithm of STB codes is also given in order to present a fair
comparison in terms of energy between MIMO (multiple-input
multiple-output) and single-antenna systems.

I. I NTRODUCTION

Future wireless communications systems are dealing with
the need to provide high-rate data communications over time-
varying fading channels. In order to provide robust commu-
nications in this environment, it is common to use a channel
code. Turbo codes are channel codes that have been shown
to yield remarkable coding gains close to Shannon limits in
AWGN channels [1]. However, they were thought for AWGN
channels and they suffer a loss in performance when they
have to face fading channels. In this sense, if further gains
are needed, some kind of diversity has to be implemented.

Space-Time Turbo Codes (STTC) [2-3] have been proposed
as an alternative that integrates space-time and turbo coding
into one single structure. However, they have severe complex-
ity drawbacks at the receiver. In addition, the global design
hardly depends on the antennas configuration. It this sense,
a change in the number of transmit and/or receive antennas
forces a change in the structure of both the turbo coder and
decoder, dramatically reducing the system flexibility.

Space-Time Block (STB) coding [4-5] is a combination of
spatial and temporal diversity at the transmitter that provides
important diversity gains while using linear processing atthe
receiver. It is also interesting in the sense that places allthe
intelligence at the transmitter while leaving low complexity at
the receiver. Thinking in a cellular system, the cost of multiple
transmit chains at the base stations can be amortized over the
total number of users.

This work considers the serial concatenation of a turbo code
and a STB code [6-8]. By separating the channel coding from
the diversity coding, the system presents a modular structure
whose key advantages are flexibility and low complexity.

Then, the iterative decoding of turbo codes is reasonably
simple. This reasonable complexity applies to the case of
binary modulations, as the complexity of turbo decoding
increases exponentially with the number of bits per symbol.
However, the use of binary modulations such as BPSK results
in a poor global rate. The main issue addressed in this work
is to increase the data rate by extending the binary decoding
to quaternary modulations such as QPSK with no increase in
turbo decoding complexity. This is achieved by STB decoding
and estimating at bit level, splitting the quaternary QPSK
modulation into two binary BPSK channels.

The outline of the paper is the following. Section II gives
a brief system description and introduces the signal model.
Formulation and least squares decoding of STB codes is
addressed in Section III. Section IV is concerned with the
binary turbo decoding of quaternary modulations. Performance
evaluation of the system under two different configurationsis
given in Section V. Finally, some conclusions are summarized
in Section VI.

II. SYSTEM DESCRIPTION ANDSIGNAL MODEL

The global system structure is shown in Figure 1.
A frame of NTC data bits is turbo encoded (optionally

punctured) and BPSK modulated. The structure of the turbo
code is based on the parallel concatenation of two Recursive
Systematic Convolutional (RSC) codes [1]. One RSC code
codes theNTC data bits while the other codes and interleaved
version of the data bits. The data bits and the parity branch
of each RSC code is then multiplexed to form a codeword.

Then, the encoded BPSK symbols are QPSK mapped in
couples and grouped into blocks ofQ QPSK symbols. The
in-phase and quadrature components are denoted byα(n) and
β(n) respectively, and the indexn stands for the position
of the block over the total number to be STB coded in the
same frame. Each of these blocks is then STB coded alongT
channel uses andM transmit antennas.

The samples taken over theN receive antennas alongT
time slots (channel uses) allow the STB decoder to estimate the
in-phase and quadrature components,α̂(n) and β̂(n), for the
Q symbols of the current STB block. Then, they are serially
grouped until the estimates of all the blocks relative to the
same frame have been obtained. Finally, the turbo decoder
can start the decoding of the symbols.

From the turbo coder and decoder point of view, the
encoded BPSK symbols see a SISO (single-input single-
output) equivalent channel (as shown in the figure, dashed
line). In consequence, a binary decoding can be done while
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Fig. 1. Block diagram of the system

using a quaternary modulation such as QPSK, keeping a low-
complexity receiver while avoiding low-rate modulations.

III. F ORMULATION AND DECODING OFSTB CODES

The main aim of this section is to find the relationship
between the in-phase and quadrature components of the trans-
mitted symbols,α(n) and β(n), and the received samples
during a block period (T time slots).

A. General Formulation of STB codes

A STB code takes a block ofQ symbols as inputs and
transmits linear combinations of them and their complex
conjugates overM antennas inT channel uses. The rate of the
code is thenQ/T . Using the following matrix formulation, it
can be described as:

S(n) =

Q
∑

q=1

αq(n)Aq + jβq(n)Bq (1)

whereS(n) is a matrix containingT column vectors, each one
representing the transmitted symbols over theM antennas at
a given channel use, that is:

S(n) = [s1(n) s2(n) ... sT (n)] (2)

si(n) ∈ C
M×1 for i = 1...T

{Aq}q=1...Q, {Bq}q=1...Q andS(n) areM ×T complex ma-
trices, that is,{Aq,Bq,S(n)} ∈ CM×T . The set of matrices
{Aq}, {Bq} represents the contribution of the real (αq(n))
and imaginary part (βq(n)) of theq− th symbol to then− th
transmitted blockS(n).

It is clear that the use of a STB code increases the
effective energy per symbol if no normalization is done, since
the energy ofQ symbols is potentially transmitted alongT
channel uses. In order to obtain coherent simulation results in
a fair comparison with SISO systems, this issue has to be taken
into account. A normalization algorithm for the given set of
constituent matrices{Aq}q=1...Q, {Bq}q=1...Q is explained in
Appendix I.

B. Matrix Model of STB Reception

A model in matrix notation is derived from [9] for the
reception of STB codes. Its application to obtain the symbols’
estimates will be considered herein.

We now assume that the normalization of the STB codes has
been done, which only represents some row-by-row scaling
factors in the set of matrices{Aq}, {Bq}. Then, we focus in
the received blockY(n), that can be expressed as

Y(n) = HS(n) + W(n) (3)

where H ∈ CN×M stands for the MIMO channel matrix,
whose components are zero mean complex gaussian with unit
variance, andW(n) ∈ CN×M is the matrix whose entries
correspond to thw AWGN samples of then − th space-time
block.

It is interesting for the subsequent analysis to obtain a
closed expression for the vertical stacking ofS(n) denoted
by vec(S(n)) .

vec(S(n)) =

Q
∑

q=1

αq(n)vec(Aq) + jβq(n)vec(Bq) (4)

Using the following definitions:

aq ≡ vec(Aq) q = 1...Q

bq ≡ vec(Bq) q = 1...Q

Ã ≡ [a1(n) a2(n) ... aQ(n)]

B̃ ≡ [b1(n) b2(n) ... bQ(n)]

expression (4) can be rewritten as

vec(S(n)) = [Ã jB̃]

[
α(n)
β(n)

]

≡ [Ã jB̃]x(n) (5)

Then, by vertically stacking the received block of samples,
we have

y(n) ≡ vec(Y(n)) = vec(HS(n)) + vec(W(n)) (6)

In order to obtain the estimates of the in-phase and quadra-
ture components of the symbols, it is necessary to separate all
the matrices into its real and imaginary parts.
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H = HR + jHI (7)

w(n) ≡ vec(W(n)) = wR(n) + jwI(n) (8)

The following property attaining to the vertical stacking of
the product of matrices [10] will also be used:

vec(LRC) = (CT ⊗ L)vec(R) (9)

where (.)T stands for matrix transposition and⊗ for the
Kronecker’s product. Then, the use of (9) into (6) yields:

y(n) = (IT ⊗ H)vec(S(n)) + w(n) (10)

whereIT stands for theT × T identity matrix. Now, we can
apply (5),(7) and (8) into (10), and after some manipulation
and separation of the real and imaginary parts ofy(n) we can
obtain:

ỹ(n) ≡

[
y

R
(n)

y
I
(n)

]

=

=

[
(IT ⊗ HR)Ã −(IT ⊗ HI)B̃

(IT ⊗ HI)Ã (IT ⊗ HR)B̃

]

︸ ︷︷ ︸

F

[
α(n)
β(n)

]

+

[
wR

wI

]

≡

≡ Fx(n) + w̃(n) (11)

With w̃(n) white gaussian noise, that is,̃w(n) ∼
N (0, σ2

I2NT ). This last expression has the utility to reflect
the contribution of the in-phase and quadrature componentsof
the transmitted symbols into the real and imaginary parts of
the received samples in a general form. It is only necessary
to compute the matrices̃A and B̃ derived from the set of
constituent matrices{Aq}, {Bq}, q = 1...Q and estimate the
channel matrixH to then proceed to estimate the symbols
α(n) andβ(n).

C. Least Squares Estimation and Decoding

Now, we can use (11) to estimate the components of the
transmitted symbols by applying a least squares criterion:

x̂(n) = arg min
x(n)

‖ỹ(n) − Fx(n)‖2 (12)

which is also a ML criterion under the gaussian assumption of
w̃(n). The well-known solution of the pseudo-inverse yields:

x̂(n) =

[
α̂(n)

β̂(n)

]

= F
#ỹ(n) (13)

F
# = (FT

F)−1
F (14)

Matrix transposition (.)T is used instead of the hermitian
(.)H since all the elements ofF are real, as can be observed
from (11). Then, if we apply (11) and (14) into (13) it results:

[
α̂(n)

β̂(n)

]

=

[
α(n)
β(n)

]

+ F
#w̃(n) (15)

One key advantage of this way of decoding is that a change
in the number of receive antennas,N , only represents a change

of the dimensions ofH while the way of constructingF is
the same.

This formulation is code-dependent, but it provides a closed
formula to decode any STB code in terms of its structure,
defined in its constituent set of2Q matrices. When using
quaternary modulations, every component ofα(n) and β(n)
carries only the information of one bit, so a binary decoding
can be done.

IV. B INARY TURBO DECODING OFQUATERNARY

MODULATIONS

Depending on the number of bits that enter the turbo coder
[11] at each considered trellis transition, we talk about binary
codes, double-binary codes, or, more generally,b-binary codes.
Non-binary codes have the advantage of supporting higher-
rate modulations at the cost of exponentially increasing the
decoding complexity and also degrading the interleaving gain.
When using non-binary codes, the interleaving has to be done
at symbol level (not at bit level) in order to guarantee the
correct alignment of the parity. With a fixed frame length of
NTC bits, a symbol-level interleaver would have a size of
NTC/b (b stands for the number of bits per symbol) while a
bit-level interleaver would have a size ofNTC . This results
in a loss of degrees of freedom in randomizing the output
sequence that causes a loss in performance.

We will consider a signal constellation with an alphabet of
sizeM. Then the number of bits per symbol isb = log2(M).
Whenb-binary turbo decoding [12], the decoder calculates the
following Log-Likelihood Ratio (LLR) for each binary word
of sizeb, uk (see Figure 1):

LLR(uk) = log
P (uk|rk)

P (uk = 0|rk)
(16)

whererk stands for the received sequence (the inputs of the
turbo decoder). Expression (16) implies the calculation of
(2b − 1) different ratios for each word. Then, the decision
rule is:

ûk =

{
0 if LLR(uk) < 0 ∀uk 6= 0

argmaxu
k
{LLR(uk)} otherwise

(17)

We apply the max-Log-MAP algorithm [13] to compute
(16), which is a reduced-complexity version of the optimal
MAP decoding [14]. Then, the calculation of the LLR’s is
done in the logarithmic domain using an iterative routine. The
LLR can be expressed as:

LLR(uk) = max
s

{Ak−1(s
′) + Γ

u
k(s′, s) + Bk(s)} −

− max
s

{Ak−1(s
′) + Γ

0
k(s′, s) + Bk(s)} (18)

where the indexk refers to the position of the word over the
total of words in the same frame ands and s′ denote states
of the trellis at a given step.Γu

k(s′, s) is a metric associated
with the trellis transition(s′ → s) when the wordu enters
the coder and does not have to be updated at each iteration.
Ak−1(s

′) is a measure of the probability of being at states′

at the time in which the worduk entered the coder (taking
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into account the words before it).Bk(s) is a measure of the
probability of leaving the trellis in the states afteruk (taking
into account the words after it). The values ofAk−1(s

′), Bk(s)
can be rapidly calculated recursively, whereas the calculation
of Γ

u
k(s′, s) depends on the type of channel and noise.

The most complex part of the algorithm is themax{.}
search, which has to be done twice each iteration to calculate
(2b − 1) different LLR’s for each word. This exponential in-
crease in complexity (and also the degradation of the interleav-
ing gain) can be avoided if bit-level estimates can be passed
to the decoder. The way of obtaining this estimates hardly
depends on the modulation used, but we will concentrate on
quaternary modulations.

As we have found a way to obtain bit level estimates when
using quaternary modulations in Section II.C, binary decoding
can be applied. This is because in quaternary modulations,
each symbol carries the information relative to 2 bits and itis
enough to estimate its in-phase and quadrature components to
split this information into two binary estimates. In our case, a
QPSK channel is split into two parallel BPSK channels. Then,
the low-complexity binary max-Log-MAP algorithm can be
used to decode the bits taking as inputs the rearrangedα̂(n)
and β̂(n).

V. PERFORMANCEEVALUATION

The concatenation of a turbo code and a STB code applying
the binary turbo decoding while using QPSK modulation is
simulated with two different STB codes. In the first configu-
ration, the STB code used wasAlamouti’s [15] one:

G1 =

[
s1 s2

−s∗2 s∗1

]

(19)

In the second one, the STB code used was taken from [16]:

G2 =







s3 0 s2 s1

0 s3 s∗1 −s∗2
s∗2 s1 −s∗3 0
s∗1 −s2 0 −s∗3







(20)

As these two codes transmit the same energy in each chan-
nel use, the proposed normalization algorithm in Appendix I
will only represent a global scaling factor of all the constituent
matrices. However, when codes with a more sophisticated
structure have to be used, the scaling factor varies row-by-
row and is different for each matrix. One example of these
kind of STB codes is [5]:

G3 =









s1 s2
s3√
2

−s∗2 s∗1
s3√
2

s∗

3√
2

s∗

3√
2

(−s1−s∗

1
+s2−s∗

2
)

2
s∗

3√
2

− s∗

3√
2

(s2+s∗

2
+s1−s∗

1
)

2









(21)

Performance results will be given forG1 andG2 considering
two different Rayleigh fading conditions for each code: 1)
quasi-static, which means that the MIMO channel matrixH
is constant within all the space-time blocks pertaining to the
same frame ofNTC bits and independent from frame to frame;
2) fully-diversity, whereH varies from block to block. Perfect

Channel State Information (CSI) knowledge at the receiver
will be considered.

The turbo code used in both schemes is the same. Table I
summarizes its parameters, where the inner interleaver belongs
to the S-random family described in [17].

TABLE I

PARAMETERS OF THETURBO CODE USED IN THESIMULATION

Frame Size NTC = 400 bits

RSC’s polynomial generator [7,5]

Rate 1/3 (no puncturing)

Inner Interleaver S-random S=13

Decoding Algorithm max-Log-MAP

Decoding Iterations 4

The performance of both configurations (concatenation of
the turbo code described above and the STB codesG1 andG2)
is depicted in Figures 2 and 3. Figure 2 is concerned with the
BER in the quasi-static fading channel case, while Figure 3
shows the BER performance in a fully-diversity channel.

Two aspects derived from the curves have to be remarked:

• In both cases, the slope of the curves is greater in
the fully-diversity case than in the quasi-static. This is
because in the later, the channel is richer in diversity
since each block sees a differentH. Then, bits which en-
countered good fading coefficients have error-correcting
capacity over bits that suffered severe fading in the same
frame, due to the inner interleaver of the turbo structure.

• Specially in the quasi-static channelG2 performs better
thanG1, because the former has rate3/4 and the latter
1. SinceG2 is not a full-rate orthogonal complex design
it offers more diversity per symbol thanG1 which is full-
rate. In fact, full-rate complex orthogonal designs doesn’t
exist for M > 2 [5].
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Fig. 3. BER curves ofG1 andG2 in a fully-diversity fading channel

VI. CONCLUSIONS

In this work, a general matrix formulation for the reception
of STB codes have been presented. This formulation is very
flexible and allows STB decoding for every arbitrary number
of receive antennas. In addition, estimates of the in-phaseand
quadrature components of the symbols can be done. Then, the
QPSK modulation can be divided into two BPSK channels.
This rearranged estimates can be used by the turbo decoder to
start the decoding process. As a result, a way of extending
binary turbo decoding while using quaternary modulations
has been provided. The key advantage of this system with
respect to a double-binary decoding is an increased rate at
no complexity penalty. Future work will address the extension
of binary turbo decoding to higher-order modulations and an
explicit comparison with ab-binary turbo decoding scheme.

APPENDIX I
ENERGY NORMALIZATION OF STB CODES

Denoting by Es the energy of one transmitted symbol
and E(.) as the statistical expectation operator, we want to
normalize the set of matrices{Aq}, {Bq}, q = 1...Q to
achieve:

• E{trace(SH(n)S(n))} = QEs - The total energy trans-
mitted during a space-time block has to be equal to the
energy ofQ symbols, forcing the system to not increase
the effective energy per symbol.

• E{|si(n)|2} = QEs/T , i = 1...T - The same energy
has to be transmitted per channel use. This condition
forces the STB code to perform in energy terms as a
single-antenna system transmitting one unique symbol
per channel use.

Since E{trace(SH(n)S(n))} =
∑T

i=1 E{|si(n)|2} (recall
(2)), if we guarantee the second condition then the first will
also be accomplished. It will be assumed that

E{αq} = E{βq} = 0 (22)

E{αmαn} = E{βmβn} = E{αmβn} =
Es

2
δ[m − n] (23)

that is, the signal constellation is symmetrical with respect to
the center of axis, all the symbols have equal probability and
are independent of each other.δ[m] stands for the Kronecker’s
delta. Decomposing the set of constituent matrices row by row
we have:

Aq = [aq
1(n) aq

2(n) ... aq
T (n)]

Bq = [bq
1(n) bq

2(n) ... bq
T (n)]

for q = 1...Q. Then applying (22), (23) and the later decom-
position, it yields:

E{|si(n)|2} = E{|

Q
∑

q=1

(αqa
q
i + jβqb

q
i |

2} =

=
Es

2

Q
∑

q=1

(|aq
i |

2 + |bq
i |

2) (24)

Then, using (24) in the second condition it becomes:

Q
∑

q=1

(|aq
i |

2 + |bq
i |

2) =
2Q

T
i = 1...T (25)

which forces a row by row normalization of the constituent
matrices of the STB code, defining the normalization matrix
Γ as follows:

Γ =










γ1 0 · · · 0
0 γ2 0 · · · 0
...

. . .
. . .

. . .
...
0

0 · · · 0 γT










∈ R
T×T (26)

γi ≡

(
2Q/T

λi

)1/2

i = 1...T (27)

λi ≡

Q
∑

q=1

(|aq
i |

2 + |bq
i |

2) i = 1...T (28)

Then, the normalization of the STB code to make a fair
energy comparison with single-antenna systems can be done
with the matrix product:

A
norm
q = AqΓ q = 1...Q (29)

B
norm
q = BqΓ q = 1...Q (30)

Finally, the set of constituent matrices{Anorm
q }, {Bnorm

q },
q = 1...Q is used instead of the original one.
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