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A new fuzzy gradient-adaptive lossy predictive coding system
for still image compression

      Abstract - In this paper a new fuzzy logic-based lossy
predictive coding system for gray-scale still image
compression is developed. The proposed coder employs a
recently introduced adaptive fuzzy prediction methodology
in the predictor design. In addition, it adopts a novel fuzzy
gradient-adaptive quantization scheme. The proposed
coding technique possesses superior performance over its
non-fuzzy counterparts especially at low bit quantization.
This is due to the inherent adaptivity in the fuzzy
prediction methodology as well as the gradient-adaptive
quantization scheme. Simulation results are provided to
demonstrate the efficient performance of the proposed
fuzzy predictive coding system.

      Keywords - Image Coding, Lossy Predictive Coding,
Adaptive Prediction, Switched Quantization, Fuzzy
Gradient Classification

I. Introduction

      Rapidly growing demand for the transmission and storage
of high quality imagery data has motivated researchers to
develop advanced image compression techniques. The main
objective of image compression or coding is to achieve a low
bit rate representation of digital images while maintaining
minimum perceived loss of image quality.  Research activity in
the field of image coding has resulted in a multitude of coding
paradigms, including transform coding, subband coding, vector
quantization and predictive coding, naming only a few.
Predictive coding offers an attractive, efficient yet
computationally simple technique for encoding of high-
resolution imagery data. Medical imaging, image archiving,
remote sensing, preservation of artwork and historical
documentation are all candidate fields for predictive coding

      In predictive coding [1-2], also called differential coding,
such as differential pulse code modulation (DPCM), the
transmitter and the receiver process the image in some fixed
order (say raster order, row by row and left to right within a
row). The current pixel is predicted from the preceding pixels,
which have been reconstructed. The difference between the
current pixel )y,x(P and its predicted value )y,x(P̂ ,

prediction error )y,x(d , is  then quantized, encoded and

transmitted to the receiver. A block diagram of a general lossy
DPCM coding system is depicted in Figure (1) where the
codeword assignment in the encoder and its counterpart in the
decoder are not included.

      In the lossless coding mode of predictive coding, the
quantizer is not included and the output of the predictor is
restricted to be integer numbers and the difference is coded

with an entropy-coding algorithm. In this case, differential
coding is referred to as information-preserving or lossless
differential coding.

(a)

(b)

Fig. 1. Block diagram of a general lossy DPCM scheme
(a) Encoder part    (b) Decoder part

      The underlying notion beyond predictive coding is to
remove mutual redundancy between successive pixels by
coding prediction errors. If the prediction is well designed,
then the distribution of the prediction error is concentrated near
zero and has substantially lower first order entropy than the
entropy of the original image.

      The design of a lossy predictive coding scheme involves
two main stages, which are predictor design and quantizer
design. The interaction between the predictor and the quantizer
is quite complex but it significantly affects the performance of
lossy predictive coding. Although such interaction must be
taken into consideration, the predictor and the quantizer are
often separately designed. With a well-designed predictor, if
the quantizer is not properly designed, the overall performance
will deteriorate especially at low bit quantization. Similarly,
employing a properly designed quantizer and inefficient
prediction scheme will increase the quantization errors and
hence the efficiency of the coding scheme is significantly
reduced.
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      Extensive research activity has been devoted to predictor
design. The multitude of prediction schemes can be generally
categorized into linear and nonlinear schemes. Another
classification is adaptive and nonadaptive schemes. Linear
predictors [1-2] exploit a linear combination of a set of
previously decoded pixels to estimate the predicted value of
the current pixel. However, images are highly nonstationary
and large prediction error occurs at image edges and contours.
In order to imp rove the prediction efficiency, adaptive
predictors that adapt to local image properties are employed [
3-4]. On the other hand, nonlinear predictors [5-7,13] yield
superior performance over linear counterparts with respect to
minimizing the mean square error. It is thus desirable that the
predictor should enjoy the adaptivity as well as the
nonlinearity characteristics for increased performance of
predictive coding.

      Quantizer design significantly affects the performance of
lossy predictive coding. It is to some extent a challenging task
to achieve high perceptual quality of decoded images
especially at low bit quantization. The prediction error
distribution is generally not uniform. The probability of
occurrence of small prediction errors (smooth regions) is
greater than the probability of occurrence of large prediction
errors (edge regions). Nonlinear quantizers [1-2] are thus
necessary to achieve minimum mean squared quantization
error by distributing decision levels according to the
probability density function of the prediction error. Decision
levels are densely distributed in the regions of high probability
and coarsely distributed in the regions of low probability.

      However, images are highly nonstationary, thus using a
single fixed nonlinear quantizer for a given image will reduce
the efficiency of performance. Smooth regions will be
reconstructed with less granular noise. However, edge regions
will not be instantaneously reconstructed because of the slope
overload quantization distortion. This leads to blurred edges
and reduced perceptual quality of decoded images especially at
low bit quantization. Adaptive nonlinear quantization schemes
are thus very attractive and effective solutions to make the
quantizer design adaptive to image characteristics to achieve
better performance. Examples of adaptive quantization
schemes are forward adaptive quantization, backward adaptive
quantization and switched quantization [1-2]. Adaptive
predictor can be advantageously combined with a switched
nonuniform quantizer to achieve improved performance with
respect to prediction as well as quantization.

      In the past decade, there has been a significant amount of
research activity in the field of fuzzy image coding. This has
resulted in a variety of coding schemes in adaptive transform
coding [8-11], subband coding [12] and predictive coding [13],
naming only a few.  With respect to lossy predictive coding,
Yu [13] developed an adaptive fuzzy logic-based prediction
scheme that adapts to the image local structures to improve the
predictor design. In this scheme, five local patterns are
assumed for the image. The fuzzy membership functions
characterizing these patterns are derived using a gradient-based
methodology. The predicted value of the current pixel is
obtained based on the membership functions and the defined

predicted values for the different patterns. This fuzzy
prediction scheme results in better reconstruction of edges as
well as smooth regions.  However, the performance of the
fuzzy coding system, which employs this fuzzy prediction
methodology, deteriorates at low bit quantization because
quantization errors are sometimes so large as to mislead the
membership functions.

      In this paper a new adaptive fuzzy predictive coding
system is introduced. The proposed coder employs the
adaptive fuzzy prediction methodology developed in [13]. This
results in better prediction of smooth as well as edge regions.
In addition, the proposed coder adopts a novel fuzzy gradient-
adaptive quantization scheme that switches between three
well-designed nonuniform quantizers depending on the local
gradient of the pixel to be coded. This, in turn, leads to reduced
quantization errors in both smooth and edge regions and
consequently higher perceptual quality of reconstructed images
is achieved.

      The rest of the paper is organized as follows. The proposed
coding system is described in details in section II. Simulation
results are provided in section III to evaluate the performance
of the proposed coder and the paper concludes in section IV.

II. The Proposed Coding System

A. The Adaptive Fuzzy Prediction Scheme

      In the proposed coding system, the adaptive fuzzy
prediction methodology developed in [13] is adopted in order
to solve the problem of imprecise image local structures in the
prediction. In this scheme, five local patterns of the image are
assumed which is uniform area, horizontal edge, vertical,

ο45 diagonal edge and ο 135 diagonal edge patterns. The
prediction values of the current pixel in the highly-defined five
local patterns can be defined in terms of the ( 101 pp − )

neighborhood, Figure (2), using extrapolation as follows [13]:
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where 41 kk − are constants to be determined.

Fig. 2. The neighborhood of the current pixel )y,x(p0
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      Image local patterns are not highly defined and hence
fuzzy sets can be exploited successfully in defining these local
patterns and in classifying the image local structures into these
patterns, efficiently. The five local patterns are thus
characterized by five fuzzy membership functions, which are
computed as follows[13]:
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Where αandδ are positive constants and )y,x(f90 ,

)y,x(f0 , )y,x(f45 and )y,x(f135 are the first order gradient

in the horizontal, vertical, ο45 diagonal and ο135  diagonal
directions respectively, and are approximately computed
within the neighboring pixels of the current pixel )y,x(p0 as

follows[13]:
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      These membership functions have been derived knowing
that the directional gradient assumes a local maximum in the
direction perpendicular to the contour direction. Finally, the

fuzzy prediction value of the current pixel )y,x(P̂ is defined

as:

)y,x()y,x(P )y,x()y,x(P                             
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      The main computational complexity associated with this
fuzzy prediction scheme consists in computing the
membership functions, )y,x(0µ , )y,x(90µ , )y,x(45µ and

)y,x(135µ  in terms of the first order gradient values
α)y,x(f90 ,

α)y,x(f0 , 
α)y,x(f135 and 

α)y,x(f45 , and

δ2 . In Reference [13], the author has presented an efficient
methodology for reducing the implementation complexity
associated with the computation of the membership functions.
The reader is kindly referred to [13] for more details in this
respect.

      The parameters of the adaptive fuzzy prediction scheme,
α , δ , 1k , 2k , 3k and 4k , are optimized for a given image

such that entropy of the prediction error is minimized. To
further reduce the complexity of the fuzzy prediction scheme,
the set of the predictor parameters are optimized only once
using a proper training image. Then the fuzzy predictor is used
for all images without any modification in its parameters. A
proper training image must have a multitude of edge patterns.
In the context of the proposed coding system, that image is
chosen to be the standard Barbara image. The parameters
optimized for the standard Barbara image are: 5.0kk 21 == ,

05.0kk 43 ==  , 4=α  and 000,40=δ .

B. The Proposed Fuzzy Gradient-Adaptive Quantization
Scheme

B.1. Motivation

      Quantizer design significantly affects the performance of
lossy predictive coding in terms of image quality especially at
low bit rates. This is due to the fact that the reconstruction
errors in lossy predictive coding are equal to the errors resulted
from the quantization process. Hence, if the quantizer is well-
designed, the quantization errors will be reduced and an
improved image quality is achieved. Unlike uniform
quantizers, nonuniform counterparts, such as the Lloyd-Max
quantizer [1-2], have superior performance with respect to
minimizing the mean squared quantization error. Employing
one quantizer for the whole image; however, reduces the
coding efficiency especially at low bit quantization. Smooth
regions will be reconstructed with less granular noise. On the
other hand, edge regions will not be reconstructed
instantaneously leading to edge blurring. It is thus imperative
that for increased quantization performance, the quantizer
should enjoy the nonuniformity as well as the adaptivity
characteristics.

      In the proposed coding system, a novel fuzzy gradient-
adaptive switched nonuniform quantization scheme is
proposed. This  scheme switches between three well-designed
nonuniform quantizers depending on the local gradient of the
pixel to be coded. The underlying notion of the proposed
scheme is summarized as follows. The image gradient is first
estimated, then a proposed fuzzy gradient classification
technique called Maximum Entropy-based Fuzzy Gradient
Classification (MEFGC) algorithm, is adopted to classify the
image gradient into three classes, namely, low gradient,
medium gradient and high gradient classes. A gradient-
adaptive nonuniform Lloyd-Max quantizer is then designed for
each class separately. The design is based on a novel
exponential weighting strategy of the prediction error
estimated form a preceding fuzzy lossless predictive coding
stage. After the three quantizers have been well-designed, the
quantization process switches from one quantizer to the other
depending on the local gradient of the current pixel to be
coded. The proposed quantization scheme adapts to image
activity by proper selection of step size values in accordance
with image gradient and hence quantization errors are
significantly reduced in both smooth and edge regions. This, in
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turn, leads to high perceptual quality even with low bit
quantization. In the subsections that follow, the MEFGC
algorithm is introduced. Then the proposed quantization
scheme is described in details.

B.2. Maximum Entropy-Based Fuzzy Gradient Classification
Algorithm

      Recently, we have developed a new automatic fuzzy edge
detection technique [11,14-15]. The underlying notion of that
technique is that the problem of edge detection is viewed as a
three-level thresholding problem. The goal of which is to
classify the image domain according to the gradient value into
three fuzzy classes. These classes constitute pixels having low
local gradient  (smooth region), medium local gradient (weak
edges) and high local gradient (strong edges), respectively.
These classes (regions) are characterized by membership
functions whose parameters are determined using an efficient
search technique [16]. Since in edge detection it is desired to
obtain the best compact representation of image edges, the
criterion upon which the parameters are chosen is to minimize
the fuzzy entropy. In the proposed fuzzy predictive coding
system, a modified version of that technique is developed. The
modification consists in two aspects. The first is that the
maximum entropy is chosen rather than the minimum entropy

motivation beyond this choice is to retain most of the gradient
information after the thresholding process. The second
modification is that the output of the technique is not the edge
map but the classification itself of the image gradient. Hence,
this technique is referred to as Maximum Entropy-Based Fuzzy
Gradient Classification (MEFGC) algorithm.

      The purpose of the MEFGC algorithm is to classify the
image gradient into three classes, namely, low gradient,
medium gradient and high gradient classes.  These classes are
characterized by three fuzzy membership functions, lowµ ,

mediumµ and highµ , respectively. Figure (3) demonstrates the

three fuzzy membership functions corresponding to the three
fuzzy classes of image gradient combined with a hypothetical
image gradient normalized histogram. The three membership
functions are characterized by four parameters, 1a , 1c , 2a and

2c  which satisfy the conditions 11 ca ≤ and 22 ca ≤ . These

parameters are found using the effective search scheme
introduced in [16]. The basis for that scheme in the context of
the proposed coding system is that the parameters are selected
such that the fuzzy entropy of image gradient is maximized
after the thresholding process. The reader is kindly referred to
[16] for a detailed description of the search scheme.

      The fuzzy entropy function is defined by:
( )

highhighmediummedium

lowlow2211

plogpplogp                          
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     (6)

where ( )∑
=

⋅≡
maxG

0k
lowklow k hp µ , ( )∑

=
⋅≡

maxG

0k
mediumkmedium k hp µ ,

 and ( )∑
=

⋅≡
maxG

0k
highkhigh k hp µ

Where kh is the probability distribution of the image gradient

(gradient histogram), maxG is the maximum gradient value and

maxG,....,2,1,0k = .

Fig. 3. The membership functions of the three fuzzy classes of
image gradient combined with a hypothetical image gradient

normalized histogram

      After the membership parameters have been determined,

the gradient thresholds 1gt and 2gt are automatically found as

follows:
( ) 2cagt 111 +=  and ( ) 2cagt 222 +=                                (7)

      A pixel is classified into low gradient class if its computed
gradient value is lower than 1gt and is classified into medium

gradient class if its gradient value is lower than 2gt and higher

than 1gt . Otherwise, it is classified into high gradient class.

B.3. Description of the Proposed Quantization Scheme

    The design of the proposed quantization scheme is described
in a four-step procedure as follows.

1. The gradient of the image is estimated using Sobel
operator [2] then the MEFGC algorithm is adopted to
classify the image domain according to the gradient values
into three classes, namely, low gradient, medium gradient
and high gradient classes, respectively.

2. A prediction error image )y,x(PE is obtained from a

preceding stage of the fuzzy lossless predictive coding
scheme described in Section II.A.

3. A set of three probability density functions (PDFs),
corresponding to the low gradient, medium gradient , and
high gradient  classes, is created using a novel gradient-
adaptive exponential weighting strategy of )y,x(PE as

follows:
{ } 1,2,3  k       PEPDFPDF kk ==  
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Where G(x,y) is the gradient at the pixel at location (x,y),
Gmax  is the maximum image gradient, kγ is a class-

dependent coefficient that has a suggested value of 0.25.
from experimental simulations and k = 1,2 and 3 refer to
the low gradient , medium gradient and high gradient
classes, respectively.     

4. For the set of three PDFs, kPDF , three optimal Lloyd-

Max quantizers, LQ , MQ and HQ which correspond to

low gradient, medium gradient  and high gradient  classes
respectively, are designed for a specified number of
quantization levels/bits.

      In this manner, a quantizer is efficiently and separately
designed or each class of image gradient. Consequently, the
step sizes of the quantizer are properly changed according to
the gradient of the current pixel to be coded. Finer step sizes
will be used for low gradient regions while coarser step sizes
will be used for high gradient regions. In addition, the step
sizes are adaptively changed within each gradient class due to
the adopted optimal quantization scheme (Lloyd-Max
quantization scheme). This allows efficient adaptation to
image content and hence higher perceptual quality especially
at low bit quantization due to reduced quantization errors in
both smooth and edge regions. Figure (4) depicts a block
diagram for the proposed quantization design procedure.

      To further reduce the complexity associated with the
proposed fuzzy gradient-adaptive quantization scheme, the set
of the gradient-adaptive nonuniform quantizers are designed
only once using a proper training image. Again the standard
Barbara image is chosen to be that image. After the quantizers
have been designed, they are used for all images without any
modification in their parameters. In this manner, the
complexity of the quantization scheme is prohibitively
reduced, yet maintaining the gradient-adaptive characteristic.

 
 

III. Simulation Results

      In this section, the performance of the proposed fuzzy
gradient-adaptive lossy predictive coding technique is
evaluated through simulation results on a set of test images,
namely, Barbara, Lena, Peppers and CameraMan images. A
comparison between the proposed coding system with a set of
three linear predictive coding systems is provided. In linear
prediction, the predicted value is computed as a linear
weighted sum of the previously reconstructed values. The

predicted value )y,x(P̂ is defined as follows:

)1y,x(PC)1y,1x(PB)y,1x(PA)y,x(P̂ −×+−−×+−×=

where A, B and C are the predictor coefficients and

)y,1x(P − , )1y,1x(P −−  and )1y,x(P − are the previously

reconstructed pixel values. In this paper, three linear predictors
are considered and are defined as follows:
LP1 (Linear Predictor # 1):   A = 0.50, B =   0.0,  and C = 0.50
LP2 (Linear Predictor # 2):   A = 0.75, B = -0.5,   and C = 0.75
LP3 (Linear Predictor # 3):   A = 0.90, B = -0.8,   and C = 0.90

      The set of linear predictive coding systems, LP 1, LP2 and
LP3 utilizes nonuniform Max-Lloyd quantizers for the
quantization stage. Tables (I) provides a comparison between
the proposed coding scheme and the linear predictive coding
systems LP 1, LP2 and LP3 at 3-bit, 2-bit and 1-bit
quantization for the set of test images with respect to the peak
signal-to-noise ratio  (PSNR) values. It is shown how superior
is the proposed coding system over its nonfuzzy linear
counterparts. This is due to the employed adaptive prediction
as well as the novel adaptive quantization schemes. Figure (5)
demonstrates the decoded Lena images at 2-bit quantization
using the proposed and LP 2 coding systems (in the top row of
the figure) and their associated enhanced coding error images
(in the bottom row of the figure). It is observed how the
proposed system yields higher perceptual quality. In addition,
it is depicted how the coding errors are significantly reduced in
both smooth and edge regions.

 

Fig.4. A block diagram for the design procedure of the proposed fuzzy gradient-adaptive quantization scheme
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Table I: Coding results in terms of the PSNR values for the
proposed coder and the set of linear predictive coders

Fig.5. Coding results of the proposed coder at 2-bit
quantization (Left: LP2, Right: The proposed coder)  

IV. Conclusions

      Throughout the paper, a new fuzzy predictive coding
system is developed. The proposed system adopts a recently
introduced fuzzy prediction scheme. This results in better
prediction of edges with different orientations as well as
smooth regions. In addition, the proposed coder adopts a novel
fuzzy gradient-adaptive quantization scheme that switches
between three well-designed nonuniform quantizers depending
on the local gradient of the pixel to be coded. This, in turn,
leads to reduced quantization error in edge and smooth regions
and consequently higher quality.  The proposed coding system
possesses superior performance over its linear counterparts
even at low bit quantization, which is exercisable both
objectively and subjectively from the simulation results.
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Images
Quant.

Bits LP1 LP2 LP3 Proposed
Barbara

Lena
Peppers

Camera Man
1

23.435
19.701
19.292
17.935

25.732
21.572
21.379
19.802

25.304
22.478
23.230
21.135

25.7331
25.8570
25.6995
23.6480

Barbara
Lena
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Camera Man

2

29.430
25.733
24.936
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29.589
26.364
26.477
24.877

28.067
26.063
28.853
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29.9006
32.0865
32.1627
29.9407

Barbara
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Peppers
Camera Man

3

34.823
33.062
31.561
31.435

34.344
34.554
35.031
32.639

32.848
33.093
34.571
31.612

35.7949
38.8073
38.8606
35.7232


