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ABSTRACT   
 
This paper presents the design and implementation of a 
complete control system for the swing-up and stabilizing 
control of an inverted pendulum. In particular, this work 
outlines the effectiveness of the swing-up method proposed in 
[1], based on feedback linearization and energy 
considerations. The power of modern state-space techniques 
for the analysis and control of Multiple Input Multiple Output 
(MIMO) systems is also investigated and a state-feedback 
controller is employed for stabilizing the pendulum. Cascade 
control is then utilized to reduce the complexity of the 
complete controller by splitting it into two separate control 
loops operating at well distinct bandwidths.  
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1.   INTRODUCTION 
 
Being an under-actuated mechanical system and inherently 
open loop unstable with highly non-linear dynamics, the 
inverted pendulum system is a perfect test-bed for the design 
of a wide range of classical and contemporary control 
techniques. Its applications range widely from robotics to 
space rocket guidance systems. Originally, these systems were 
used to illustrate ideas in linear control theory such as the 
control of linear unstable systems. Their inherent non-linear 
nature helped them to maintain their usefulness along the years 
and they are now used to illustrate several ideas emerging in 
the field of modern non-linear control. 
 
A Single rod Inverted Pendulum (SIP) consists of a freely 
pivoted rod, mounted on a motor driven cart. With the rod 
exactly centred above the motionless cart, there are no 
sidelong resultant forces on the rod and it remains balanced as 
shown in Figure 1.1a. In principle it can stay this way 
indefinitely, but in practice it never does. Any disturbance that 
shifts the rod away from equilibrium, gives rise to forces that 
push the rod farther from this equilibrium point, implying that 
the upright equilibrium point is inherently unstable as shown 
in Figure 1.1b. Under no external forces, the rod would always 
come to rest in the downward equilibrium point, hanging down 
as shown in Figure 1.1c. This is called the pendant position. 
This equilibrium point is stable as opposed to the upright 
equilibrium point.  
 
The control task is to swing up the pendulum from its natural 
pendant position and to stabilize it in the inverted position, 
once it reaches the upright equilibrium point. The cart must 
also be homed to a reference position on the rail. All this is 

achieved only by moving the cart back and forth within the 
limited cart travel along the rail.  
 
The inverted pendulum system belongs to the class of under-
actuated mechanical systems having fewer control inputs than 
degrees of freedom. This renders the control task more 
challenging making the inverted pendulum system a classical 
benchmark for testing different control techniques. 
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Fig. 1.1. Equilibrium Points 
 
There are a number of different versions of inverted pendulum 
systems offering a variety of interesting control challenges. 
The most common types are: the single rod on a cart inverted 
pendulum considered in [1,2,3], the Double Inverted Pendulum 
(DIP) on a cart setup [4], the rotational single-arm pendulum 
[5,6] and the rotational two-link pendulum [7]. The control 
techniques involved are also numerous, ranging from simple 
conventional controllers to advanced control techniques based 
on modern non-linear control theory.  
 
As a result of their nature, most of these papers deal with the 
problem in a purely theoretical manner without going into the 
practical considerations necessary in the design and 
implementation of a practical inverted pendulum rig. This 
paper aims at presenting a complete solution unifying the 
theoretical and practical aspects of the problem, along with a 
set of experimental results demonstrating the effectiveness of 
the complete implemented system.  
 
The paper is organized as follows: Section 2 presents a brief 
overview of the complete system. Section 3 deals with the 
mathematical dynamic model of the system used both for the 
computer simulations and for the mathematical design of the 
controllers. Section 4 goes through the main steps in the design 
of the control algorithms and their digital implementation. The 
design and construction of the physical electro-mechanical 
setup of the system is briefly described in Section 5. Section 6 
presents some simulation and practical results; outlining any 
discrepancies between the two and finally some conclusions 
are drawn in Section 7. 
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2.   SYSTEM OVERVIEW 
 

This project consists in the design and implementation of both 
the physical system making up the inverted pendulum rig, and 
the control algorithms employed to attain the control task 
described in Section 1. The physical part of the system is made 
up of the mechanical setup composed of the motor driven cart 
and pendulum assembly, together with sensors and electronic 
circuitry. The control algorithms are implemented on a Digital 
Signal Processor (DSP) based system.  

Figure 2.1 depicts the complete closed loop system. The DSP 
block is the main controller, made up of the TMS320C6711 
DSP board from Texas Instruments equipped with the AED-
103, an Input/Output (I/O) daughter module from Signalware 
Corporation. The system states x  and θ , corresponding to the 
cart and pendulum displacements respectively, are obtained 
from incremental and absolute optical encoders mounted on 
the moving cart. These signals are fed to the DSP board which 
computes the other two states  and x  (using finite backward 
difference equations), and uses the control algorithm to issue 
an output signal corresponding to a torque reference. This 
torque command is then fed as a reference input to the 
analogue Proportional-Integral (PI) controller, regulating the 
motor torque accordingly by taking into account the motor 
dynamics. This controller uses the motor current, sensed by a 
Hall-effect sensor, as the feedback signal. 

θ& &

 

Inverted
Pendulum

Rack & Pinion
cart assembly

PM DC
MotorIPMIPM

Driver

PWM
&

Protection

Analog PI
Torque

Controller

I/O
 In

te
rfa

ci
ng

 B
oa

rd

D
SP

 B
oa

rd
 &

 I/
O

M
od

ul
e

Current
sensor

Cart
position
sensor

Rod
angular
position
sensor

Bold solid lines:     main control signal flow
Dashed lines:        protection signals

Power Electronic
Converter

 
Fig. 2.1. Complete Closed Loop System 

 
3.   MATHEMATICAL MODELLING 

 
The dynamic model of the whole system consists of two 
separate sub-models, namely: the non-linear model of the 
inverted pendulum, and a linear model of the Permanent 
Magnet (PM) DC motor powering the cart. This division was 
adopted in order to keep the non-linear dynamic equations of 
the inverted pendulum as simple as possible, which is 
imperative for the design of the non-linear swing-up controller. 
The non-linear inverted pendulum model considers the force 
on the cart as the input, and the angle of the pendulum and cart 
displacement as the outputs. The motor model considers the 
motor terminal voltage as its input and the shaft torque as its 
output. Both models are derived separately and the resulting 
dynamic equations are then used in the design stage to develop 
two different control systems operating simultaneously at well 
distinct bandwidths (cascade control). 
 
 
 

3.1.   NON-LINEAR DYNAMIC MODEL   
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Fig. 3.1. Rod and cart setup and its force diagram 
 
Referring to Figure 3.1 and applying Newton’s 2nd law at the 
centre of gravity of the pendulum along the horizontal & 
vertical components yields 

)cos(2
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θL
dt
dmmgV =−                                   (1) 
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dmH +=                            (2) 

 
Taking moments about the centre of gravity yields the torque 
equation 
 

θθθθ cossin HLVLcI −=+ &&&                           (3) 
 
Applying Newton’s 2nd law for the cart yields 
 

xkxMHF &&& +=−                                                                     (4) 
 
where m is the mass at the Centre Of Gravity (COG) of the 
pendulum; M is the mass of the cart; L is the distance from the 
COG of the pendulum to the pivot; x is the horizontal 
displacement of the cart; g is the gravitational acceleration; θ is 
the rod angular displacement; k is the cart viscous friction 
coefficient; c is the pendulum viscous friction coefficient; I is 
the moment of inertia of the pendulum about the COG; V & H 
are the vertical & horizontal reaction forces on the rod and F is 
the horizontal control force on the cart.   
 
Combining Equations (1) to (4), the non-linear mathematical 
model of the cart and pendulum system is obtained and is 
given by Equations (5) and (6).  
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3.2.   LINEARIZED MODEL IN STATE-SPACE FORM  

 
Equations (5) and (6) were used to model the open-loop 
inverted pendulum (motor dynamics not included) during 
simulations. The same non-linear model was used for the 
design of the non-linear swing-up controller. However, for the 
design of the linear state-feedback controller, used for 
stabilization, a linearized version of these equations was used. 
The inverted position of the pendulum corresponds to the 
unstable equilibrium point ( )θθ &,  = (0,0). This corresponds to 
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the origin of the state space. In the neighbourhood of this 
equilibrium point, both θ  and  are very small (in rad & 
rad/sec respectively). In general, for small angles of 

θ&

θ  and : θ&
θθ ≈)sin( , 1)cos( ≈θ  and ( . Using these 

approximations in Equations (5) and (6), the mathematical 
model linearized around the unstable equilibrium point of the 
inverted pendulum is obtained, and given by Equations (7) and 
(8). 
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To get these two equations into valid state space matrix form 
both and  must be functions of lower order terms only. 
Hence, must be substituted for in (7) using (8), and similarly 

 substituted for in (8) using (7). Writing the resulting 
equations in matrix form, the linearized state-space model is 
obtained and is given by the matrix linear Equations (9) and 
(10).  
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where state vector; = [ x  x   ] T                         (11) 
and output vector;  [xy =

T                                   (12) 

 

mMI
Mv1 )( +

+
=   and  

mM22 =v      (13), (14)                

From Equations (16) and (17), it is seen that V can be 
increased or decreased by changing the sign (sgn) of  in 
accordance with that of . If sgn( & ) = sgn( )  then 

> 0, similarly if sgn( ) = -sgn ( )  then V < 0. Hence, 
energy can be pumped into the pendulum by generating &  (an 
acceleration on the cart) satisfying the sign conditions listed 
above. However, one cannot concentrate on swinging-up the 
pendulum only, without considering the finite cart travel 
(limited range for x). Therefore,  has to be controlled whilst 
keeping the constraint on x in mind. Basically, the design 
method proposed in [1] suggests; constructing a control law 
such that the resulting closed loop system is linear (through 
feedback linearization) and of the form of a second order servo 
system for x, having a sinusoidal reference input to ensure the 
desired bounded nature of x. This reference input is derived 
from ( ), and generates  satisfying the sign condition 
given above. This is done in order to control V to the 
prescribed value corresponding to the energy of the pendulum 
at the upright equilibrium point. Since the pair of ( ) that 
makes V equals to the desired value is not unique, the upright 
equilibrium point cannot be stabilized using only this control 
method. For this reason a different control law is utilized when 
the pendulum approaches the upright equilibrium point. This is 
referred to as stabilizing control.  
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3.3.   PERMANENT MAGNET DC MOTOR DYNAMICS 

 
The mathematical model of the DC PM motor was required for 
the design of the motor torque PI controller. The mathematical 
model for the motor, considering the motor terminal voltage as 
input and the shaft torque as output, is given by the transfer 
function of Equation (15). 
 

 

+

=

s
sV
sT

T 2)(
)(              (15) 

 
Where L is the terminal inductance of the motor; R is the 
terminal resistance; Kt is the torque constant; J is the rotor 
inertia; VT is the terminal voltage and T is the developed 
torque. 
 
 

4. DESIGN OF CONTROL ALGORITHMS  
 

The inverted pendulum control was split in two main phases: 
the swing-up phase and the stabilizing phase. The former uses 
a non-linear controller to swing-up the pendulum, keeping the 
cart within a limited travel range on the rail. The latter uses a 
linear state-feedback controller to stabilize the pendulum in the 
inverted position once it approaches the upper unstable 
equilibrium point. It is also required to home the cart to a 
reference point on the rail, once the pendulum is stabilized. A 
transition algorithm switches smoothly from one control phase 
to the other.  
 

4.1.   SWING-UP CONTROL 
 
The method proposed in [1] and adopted for the swing-up 
control phase in this project is briefly discussed in this section. 
Reference [1] contains a thorough explanation of this method. 
This technique aims at swinging up the pendulum, while 
keeping the cart within a limited horizontal travel on the rail. 
This is achieved by satisfying a particular mathematical 
condition, derived from the mechanical energy equations of the 
pendulum, while constructing a linear servo system, using a 
sinusoidal reference input generated from the pendulum 
trajectory. The total mechanical energy of the pendulum V, and 
its derivative V , are given by Equations (16) and (17). &
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( )xmLV &&&& θθ cos=                                                                    (17) 
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4.2.   STABILIZING CONTROL 
 
This control method is based on state-space pole-placement 
design techniques using the linearized model of the inverted 
pendulum. This implies that the stabilizing control by itself 
will only ensure local stability, in the vicinity of the upright 
equilibrium point, the point about which the equations were 
linearized. The pole-placement technique permits the design of 
a linear controller that achieves arbitrary desired closed loop 
poles. The desired poles should be chosen wisely such that 
some desired closed loop characteristics are achieved. The 
final control law from this design, is the result of a matrix 
multiplication between the state vector s  and a gain matrix of 
compatible dimensions TK , such that sKF T−= .              
In this particular design, a small settling time and a high 
damping ratio were required. To meet these specifications, the 
closed loop poles were placed at s iµ=  (i =1,2,3,4), where 

962.105.41 j+−=µ , 962.1j05.42 −−=µ , 103 −=µ  and 

104 −=µ .  Basically, µ1 and µ2 are a pair of dominant closed-
loop poles with damping factor ξ = 0.9 and natural frequency 
ωn =4.5rad/sec, resulting in a settling time of approximately 1 
second. The other two poles are located far to the left of the 
dominant pair of closed loop poles and therefore, their effect 
over the overall response is minimal.  

       5.1.   INVERTED PENDULUM RACK & PINION CART 
ASSEMBLY, ENCODERS AND MOTOR 

 
4.3.   TRANSITION ALGORITHM 

 
An intermediate algorithm was designed to switch from the 
swing-up controller to the stabilizing controller and vice-versa, 
depending on the state variables θ  and . More precisely, this 
algorithm performs a smooth transition from one control law 
to the other by averaging the outputs of the two controllers in 
the transition region. This avoids what is known as hard 
switching, which may upset the system due to parameter 
uncertainties and un-modelled dynamics. Basically, if 

θ&

θ  and  
are both close to zero, only the stabilizing controller is used. 
Similarly if they are much higher than zero, only the swing-up 
algorithm is used. In between these two extremes a region was 
created, the transition region, in which both algorithms are 
processed and weighted accordingly, leading to soft switching.  

θ&

 
4.4.   DIGITAL IMPLEMENTATION 

 
The swing-up and stabilizing controllers were implemented on 
the TMS320C6711 DSP. For this reason, the corresponding 
control laws had to be implemented digitally in C. For linear 
control systems, the effects of sampling are usually taken into 
consideration by discretization; a conversion of the continuous 
time dynamic equations, taking into account the sampling 
process and the holding devices. However, non-linear physical 
systems that are continuous in nature are hard to meaningfully 
discretize [8], since well-known discretization techniques, like 
the Z-transform, do not apply for non-linear systems. 
Therefore, non-linear digital control systems are usually 
treated as continuous time systems in analysis and design. This 
approach is only justified if high sampling rates, compared to 
the bandwidth of the plant under control, are used.  Another 
important factor in digital control systems is that the time 
period between the sensing of information and actuation 

should be much shorter than the sampling period itself. In this 
system a sampling frequency of 100Hz was chosen after 
mathematical analysis revealed that the highest bandwidth in 
the system is around 1.8Hz. These requirements and the 
computational complexity of the non-linear control algorithm 
were the main reasons for using a floating point DSP to 
implement the digital controller.  
 

5.   PHYSICAL SETUP –DESIGN & CONSTRUCTION 
 
Referring to Figure 2.1, the main sub-systems are briefly 
described in the following sub-sections. 
 

 
This block represents the mechanical setup making up the test 
rig. Basically it consists of a two-meter L-shaped wooden 
bench equipped with a linear-guide rail on its horizontal face 
and a toothed rack mounted on the vertical face. The cart is an 
aluminium structure that slides over the linear-guide rail using 
a compatible linear-guide carriage fitted at the bottom as 
shown in Figures 7.1a and 7.1b. The cart holds a 250W, 36V 
Rare-Earth (RE) PM DC motor from MAXON and the two 
optical encoders. An incremental optical encoder from 
OMRON (200-pulses/rev) was used to measure the linear 
displacement of the cart on the rail while a parallel 12-bit 
absolute optical encoder from HENGSTLER was used to 
measure the pendulum angular position. The motor and the 
incremental encoder are equipped with steel pinions to engage 
firmly in the toothed rack. The pendulum (a hollow aluminium 
rod with a mass at its end) was fitted directly onto the absolute 
encoder’s shaft. It is important to note that the motor was 
directly coupled to the pinion, without using a gearbox in 
between. This was done intentionally to avoid the non-
linearities associated with gearboxes such as hysteresis, which 
cannot be modelled easily.  
 

5.2.   POWER ELECTRONIC CONVERTER 
 

After determining the required motor specifications, an 
adequate DC drive system was chosen. Conventional linear 
power amplification methods were found to be inadequate for 
the peak power levels required, and so a Pulse-Width 
Modulation (PWM) switching technique proved to be a wiser 
choice. A 4-quadrant full-bridge DC-DC converter, using 
bipolar voltage switching was selected. An Intelligent Power 
Module (IPM) from FUJI ELECTRIC, incorporating four 
power IGBTs and several protection features, was used as the 
H-Bridge. The corresponding IPM-Driver Board from the 
same manufacturer was used to provide opto-isolation between 
the control circuitry and the IPM itself, and to provide each 
upper IGBT with an independent power supply.  
 
5.3.   PWM GENERATION AND SHUTDOWN LOGIC CIRCUITRY 

 
To generate the bipolar PWM signals, a separate analogue 
electronic board was designed. This board receives a reference 
voltage from the preceding analogue PI torque controller and 
generates the PWM signals required to drive the IPM 
accordingly. It uses the Advanced PWM Motor Controller IC, 
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UC3638, from TI to modulate the reference signal. The same 
board incorporates logic circuitry that monitors the 
safety/alarm signals coming from several other circuits in the 
system and enables the shutdown pin of the UC3638 in case of 
system failure. These protection schemes include: motor over-
current protection, IPM alarm signal monitoring, cart travel 
limit switches, manual trip and a DSP command trip signal.  
 

5.4.   ANALOGUE PI TORQUE CONTROLLER AND SIGNAL 
CONDITIONING 

 
The main control program implemented in software using the 
DSP system issues a torque request signal after processing the 
data acquired from the sensors. It is the responsibility of the 
analogue torque controller board that the motor produces this 
torque as fast as possible and without any steady state error. 
This controller had to be implemented separately from the 
software controller in order to keep the non-linear control 
equations as simple as possible resulting in faster processing.  
To achieve this fundamental requirement, an analogue PI 
controller was designed using root-locus techniques. In this 
manner, an inner torque control loop was created and uses the 
instantaneous motor current, sensed by means of a Hall effect 
sensor from LEM, to achieve negative feedback. Additionally 
this board takes care of the signal conditioning, such as 
shifting, amplification, limiting, offset nulling and filtering. 
  

5.5.   I/O INTERFACING BOARD 
 

This board is responsible for the interconnections between the 
digital/analogue signals between the AED-103 data acquisition 
module and the rest of the system. It feeds the 12-bit word 
coming from the absolute encoder to the digital lines of the 
daughter-board; uses the phase encoded output of the 
incremental encoder to generate an external interrupt to the 
processor to increment/decrement the horizontal displacement 
counter; provides a connection to a DAC of the DAQ board 
(used to output the torque request signal); includes a control 
line for latching the absolute encoder word prior to reading and 
a control line issuing a shutdown command from the DSP 
board. 
 

5.6.   TMS320C6711 DSP BOARD & AED103 I/O 
DAUGHTER MODULE 

 
These two boards make up the floating-point DSP system used 
to implement the pendulum swing-up and stabilizing control 
algorithms. The DSP motherboard was equipped with its I/O 
daughter module providing the input/output capabilities 
required. In this project, one of the D/A converters on this 
board was used to output the analogue voltage corresponding 
to the torque reference computed by the DSP. Its digital I/O 
lines were used to interface the absolute and incremental 
encoders to the DSP system. One of these buffered digital 
inputs was purposely connected to the DSP to function as an 
external interrupt. This slight modification allowed the 
incremental encoder to be interfaced directly to the DSP 
without using an encoder counter IC. 
 
 
 

6.   SIMULATION & PRACTICAL RESULTS 
 

The controllers discussed in Section 4, were simulated using 
the non-linear model of the inverted pendulum. It is important 
to note that the inner loop dynamics were neglected in the 
simulations of the inverted pendulum controller. This 
assumption is valid since in practice the inner control loop was 
designed with a much higher bandwidth than the pendulum 
dynamics.  
 

 
Fig. 6.1. Simulation of Swing-Up & Stabilization 

 
Figure 6.1 shows the simulation plots for θ and x during 
swing-up and stabilization. Initially the pendulum is in the 
pendant position. It swings-up gradually, responding to the 
bounded oscillations of the cart. Up to 3.91 seconds the swing-
up controller is in control. Then, the transition algorithm takes 
over till 3.99 seconds. The state-feedback controller takes over 
completely for the rest of the time, stabilizing the pendulum in 
the inverted position and homing the cart to the reference point 
on the rail. Note that the pendulum swings-up and stabilizes in 
less than 5 seconds. 
 

 
Fig. 6.2. Practical Swing-Up & Stabilization 

 
Figure 6.2 shows the actual experimental plots for θ and x 
acquired from a swing-up and stabilization test using the 
physical inverted pendulum system designed and implemented 
in this project. It is clear that the pendulum swung-up from its 
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initial pendant position and stabilized in the inverted position, 
with the cart homing back to its initial reference point, in less 
than 5 seconds. The cart oscillations are also limited between 
16.29cm and 28.6cm during swing-up, showing the 
effectiveness of the servo cart dynamics imposed by feedback 
linearization as proposed in [1]. These results are almost a 
replica of the simulations results shown in Figure 6.1, with the 
slight difference that in practice both the cart and the 
pendulum keep oscillating slightly about the reference after 
they are stabilized. These oscillations are very small, less than 
5cm for the cart and 1degree for the pendulum and are 
accounted for by the continuous air disturbances on the rod, 
non-linear un-modelled dynamics, such as Coulomb friction, 
pinion backlash, motor dead-zone and magnetic hysteresis, and 
mechanical imperfections. 
 

 
Fig. 6.3. Rod disturbances 

 
Figure 6.3 shows a practical plot of θ , during stabilization with 
non-zero angle initial condition and momentary rod external 
disturbances. It is clear that the pendulum stabilized quickly, 
(less than a second) from an initial angle of –18degrees. Then, 
the rod was physically disturbed (momentarily hit by the 
experimenter) at t = 4s and t = 9.3s, each time regaining 
stability in the inverted position in less than a second. This 
shows the fast response and robust nature of the controller.  
 

7.   CONCLUSIONS 
 
The results presented in Section 6 verify that the system 
designed and implemented in this project was successful. The 
control task stated in Section 1 was completely fulfilled, i.e. the 
pendulum swung-up from its natural pendant position 
according to the algorithm developed in [1], and stabilized in 
the inverted open-loop unstable position using state-feedback 
pole-placement. The cart also homed back quickly to a 
reference position on the rail. The controlled inverted 
pendulum was proven to be highly robust for external rod 
disturbances and the controller exhibited stability for both x  
and θ given any initial conditions. Figures 7.1a and 7.1b show 
the pendulum rig, designed and built during this project, in the 
pendant and inverted positions respectively, during real life 
experiments.  

 
(a) (b)

Fig. 7.1.  (a) Pendant pendulum (b) Inverted pendulum  
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