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Performance and cellular capacity of M -ary PSK
in co-channel interference

Abstract—Fast simulation techniques are applied to evaluate accurately
the error rates of coherent M-ary phase shift keying (PSK) in the pres-
ence of co-channel interference (CCI) and additive white Gaussian noise
(AWGN). This type of interference occurs often in wireless systems that
employ frequency reuse. Error rates are frequently calculated based on
the assumption that CCI can be modelled as Gaussian. It is shown that
this assumption is valid only in noise dominated environments. Simulation
techniques based on adaptive importance sampling (IS) are developed for
this problem. Several new numerical results are presented which are used
to calculate the cellular capacities of wireless systems.

Keywords— Importance Sampling, Co-channel interference, M-ary
PSK, Cellular capacity.

I. Introduction

MANY digital communication systems are perturbed by in-
terference that can be modelled as a sum of sinusoids

with random phases. Mobile wireless systems often operate in
interference dominated environments which can have a limiting
effect on performance in terms of bit error rates and cellular
capacities. In particular, CCI in such systems arises from fre-
quency reuse in certain fixed patterns of geographic cells, [1]-
[2]. The information bearing signal in a particular frequency
cell is interfered by signals arriving from surrounding cells that
use the same frequency. These interfering signals appear with
random phases in an additive manner, giving rise to CCI.

Performance analysis in terms of bit or symbol error rates
is usually carried out by making the simplifying assumption
that CCI can be modelled as being Gaussian. This assumption
yields accurate results only when the signal to (additive white
Gaussian) noise ratios are low compared to the corresponding
signal to interference ratios. Hence more accurate methods are
required in interference dominated situations wherein the com-
bination of Gaussian noise and interference is decidedly non-
Gaussian. One fast simulation method, based on adaptive IS
[3] - [5], is developed in this paper for the coherent detection
of M -ary PSK signalling. It is known that properly designed
IS simulations can provide remarkable gains over Monte Carlo
procedures in terms of computational effort for the estimation
of rare event probabilities. In the following sections we adopt
a simple structure for CCI, develop biasing methods for the
random phases of the interferers and noise, describe imple-
mentation of adaptive estimators, present symbol error rates,
and calculate cellular capacity for M - ary PSK. All analyses

Fig. 1. Binary PSK signal space with 2 co-channel interferers and AWGN

are carried out for interference dominated situations as well as
those consisting of interference and additive white Gaussian
noise (AWGN) in nonfading channels. However, binary and
M -ary PSK are treated separately.

II. Co-channel interference

The following assumptions are made on the interfering sig-
nals:
• The carrier signal amplitude of the desired information bit
stream is A and the amplitude of the interfering signals is αA
where α is a positive constant. The L interferers are assumed
to have equal amplitudes.
• Interfering signals are assumed to be similarly modulated as
the desired signal but carrying different equally likely informa-
tion bits.
• The i-th interfering signal differs in phase from the desired
signal by φi. The set {φi}L1 consists of random independent
phases, uniformly distributed in (0, 2π). The interfering carri-
ers are at the same frequency as the desired signal. It is also
assumed that the interfering signals are bit synchronized with
the desired signal, resulting in all the energy of the interferer
appearing at the demodulator output. This represents a worst-
case situation.

III. Binary PSK

The optimum receiver for coherent PSK is a correlation de-
tector or a matched filter-sampler followed by a zero threshold
decision. The signal space diagram in Figure 1 shows the re-
ceiver decision region for a transmitted +1 information bit with
two interferers and AWGN. The decision statistic at the output
of the demodulator with L interferers is proportional to

A+ n+

LX
i=1

αA cosφi

where n is Gaussian and has zero mean with variance σ2n. The
error probability can therefore be written as

Pe = P (A+ n+

LX
i=1

αA cosφi ≤ 0)

= E{1(A+ n+
LX
i=1

αA cosφi ≤ 0)}

where the indicator function 1(·) = 1 if the event in its argu-
ment occurs and is zero otherwise. Each cosine term in the
above has the probability density function shown as the solid
line in Figure 2. Calculating the density of their sum is a com-
putationally intensive task, involving an L-fold convolution.
Assuming that the sum can be characterized by an equivalent
Gaussian density (based on the central limit theorem) leads to
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inaccurate answers, as is shown later. While there exists an
analytical approximation for the sum density [6], it is advanta-
geous to resort to IS simulation to estimate Pe. This method
is general and is applicable to a broad class of performance
estimation problems. The IS estimator bPe of Pe is given by

bPe =
1

K

KX
k=1

1(A+ n+

LX
i=1

αA cosφi ≤ 0)

·W (φ1, . . . ,φL, n), f ∼ f? (1)

where the notation “f ∼ f?” is used to signify that the K-
length simulation is carried out with the original densities (f )
of the random variables involved in the indicator replaced by
biasing densities (f?) that cause the error event to happen more
often. The weighting function W ensures that the estimates
are unbiased. The biasing densities are chosen such that the
variances of the estimates are smaller than those that would be
obtained without any biasing for a conventional Monte Carlo
simulation of equal length.

We consider the biasing of the interference phases and ad-
ditive noise separately. The interference cosine terms need to
have increased probability mass in the negative regions of the
support of the density. To achieve this an effective way to bias
the phases φi is to increase the probability mass in the vicinity
of φi = π. We use a Gaussian biasing density with mean at
π and a common variance of σφ. An example of the biased
density for cosφ is also shown as a dashed line in Figure 2 for
σφ = 1.5. Of course, the Gaussian simulation samples that fall
outside the (0, 2π) interval are wasted, but it turns out that the
consequent loss in efficiency is small.

For biasing the noise n, it is clear that endowing it with a
negative mean would increase the probability of making detec-
tion errors. While variance scaling can be used, in this case
it will not be as efficient as translating the mean. Denoting
translation with parameter c, the weighting function is easily

shown to be

W (φ1, . . . ,φL, n;σφ, c) ≡ f(φ1, . . . ,φL, n)

f?(φ1, . . . ,φL, n;σφ, c)
= (

σφ√
2π

´L
exp

³PL
1 (φi−π)2
2σ2φ

+ c2−2c n
2σ2n

´
, 0 ≤ φi ≤ 2π

0, elsewhere
(2)

To implement the estimator of (1) it remains to choose good
values of the biasing parameters σφ and c. This is done in
an adaptive two-dimensional optimization that determines op-
timum values of the parameters such that the variance of the
estimator is minimized. Such procedures have been adequately
described in [4] and [5]. They use stochastic Newton recur-
sions that require the partial and mixed derivatives ∂W/∂σφ,
∂W/∂c, ∂2W/∂σ2φ, ∂2W/∂c2, and ∂2W/∂σφ∂c. All these are
easily obtained from (2). The IS optimization algorithm is the
stochastic Newton recursionµ
σφ,m+1
cm+1

¶
=

µ
σφ,m
cm

¶
− δ bJ−1m · b∇I(σφ,m, cm), m = 1, 2, . . .

where δ is the step size of the recursion and bJ−1m is the inverse
of the matrix bJm given by

bJm =
Ã
Îσφ,mσφ,m Îσφ,mcm

Îσφ,mcm Îcmcm

!

where Ixy ∆ ∂Ix/∂y. The estimated gradient operator b∇ is

b∇I(σφ,m, cm) = (Îσφ,m Îcm)
T

where Iσφ,m = ∂I(σφ,m, cm)/∂σφ,m and Icm =
∂I(σφ,m, cm)/∂cm, and

I(σφ,m, cm) =

E{1(A+ n+PL
i=1 αA cosφi ≤ 0)W (φ1, . . . ,φL, n)}

is a quantity that is proportional to the estimator variance, the
expectation being taken over the unbiased distributions. All
terms with hats are estimates obtained during the IS simulation
as part of the optimization algorithm. Simulations have been
carried out for L = 6 interferers. This is an example of a
wireless mobile communications network with a hexadiagonal
cell structure in which interfering cells use the same frequency
as the cell under study. The 6 cells closest to the cell under
study are at an equal distance while all other cells using the
same frequency are at a larger distance and assumed to con-
tribute negligible interference compared to the first tier. In the
absence of noise, the signal to interference ratio SIR is defined
as 1/Lα2. Shown in Figure 3 is the algorithm for σφ for an
SIR of 7.615dB which corresponds to a Pe of 10−6. For an
IS sample size of K = 10, 000, the gain over conventional
Monte Carlo simulation obtained is 7.4×105 at a bit error rate
of 10−6. This provides a relative accuracy better than 2.5%
for a confidence level of 95%. The Pe estimates are shown in
Figure 4. It is observed that for SIR values higher than 7.81
dB, the error probability becomes zero and no bit errors occur
due to interference. This corresponds to α = 1/6. This simply
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Fig. 3. Convergence of variance parameter for SIR=7.615 dB and Pe = 10−6

means that for any α < 1/L the maximum possible total vector
length of L interferers cannot exceed the signal vector length.
Thus there exists, for the interference dominated situation, a
zero error threshold of signal to interference ratio above which
no bit errors are possible. In the presence of AWGN, the signal
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Fig. 4. BER of BPSK receiver calculated with Adaptive Importance Sampling

to noise ratio is defined as SNR = A2/2σ2n. Results are shown
in Figure 5 and 6. For an SIR of 8.5dB and SNR of 29dB, a
simulation gain of 8.6× 108 at an error rate of 2.4× 10−10 is
obtained. A relative accuracy better than 6.6% for Pe estima-
tion is obtained for all cases. The bit error probability is shown
in Figure 5 as a function of SIR with SNR as parameter. For
finite SNR an error floor exists as the SIR becomes large. The
same result is shown in Figure 6 but with SIR as the parame-
ter. For all SIR < 7.81dB, which is the zero error threshold for
CCI, an error floor exists as SNR→∞. Above this threshold
value of SIR, there is no floor.

A. Gaussian assumption

The effect of modelling the CCI as Gaussian is examined by
calculating the bit error rate assuming that the interference can
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Fig. 5. Error probabilities for BPSK with CCI and AWGN. Parameter is SNR
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Fig. 6. Error probabilities for BPSK with CCI and AWGN. Parameter is SIR

be replaced by a Gaussian noise source having the same total
power, in addition to thermal noise of course. Defining a signal
to interference and noise ratio SNIR as

SNIR =
A2

Lα2A2 + 2σ2n

the error rate is approximated as

Pe ≈ Q
¡√
2SNIR

¢
where Q(x) ≡ R∞

x
e−y

2/2 dy/
√
2π. This is shown in Fig-

ure 7, together with optimized IS estimates of Pe for compar-
ison. For low SNRs, that is in noise dominated situations, the
Gaussian approximation is close to the IS estimates. As the
SNR increases, in the interference dominated situation, the ap-
proximation becomes increasingly worse. This illustrates the
importance of making accurate simulation estimates of perfor-
mance in interference limited environments in preference to
using Gaussian approximations.
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IV. M -ary PSK

For transmitting M -ary symbols using PSK, log2M infor-
mation bits are encoded into each symbol waveform in terms
of the phases of the carrier. The optimum receiver is equiva-
lent to a phase detector that computes the phase of the received
signal vector and selects that symbol whose phase is closest.
Assume that zero phase has been transmitted. From the signal
space diagram of Figure 8, in which L = 1, the phase φr of
the received vector is described by

sinφr =
nq+αA

PL
i=1 sinφir¡

nq+αA
PL

i=1 sinφi

¢2
+
¡
ni+A+αA

PL
i=1 cosφi

¢2 (3)

and

cosφr =
ni+A+αA

PL
i=1 cosφir¡

nq+αA
PL

i=1 sinφi

¢2
+
¡
ni+A+αA

PL
i=1 cosφi

¢2 (4)

where ni and nq denote the inphase and quadrature noise
components. A correct detection is made when φr satisfies
−π/M ≤ φr ≤ π/M . Defining 1(·) = 1− 1(·), the probabil-
ity of a symbol error can be written as

Pe = P (−π/M 6≤ φr 6≤ π/M)

= E{1(−π/M ≤ φr ≤ π/M)}
and its IS estimate as

cPe = 1

K

KX
k=1

1(−π/M ≤ φr ≤ π/M)W (φ1, . . . ,φL, ni, nq)

The indicator for the complement of the event {−π/M ≤ φr ≤
π/M} can easily be simulated by referring to the signal space
diagram of Figure 8 and noting that the error region comprises
of the region {ni + A + αA

PL
i=1 cosφi ≤ 0} together with

(union) the intersection

{ni +A+ αA
PL

i=1 cosφi > 0} ∩ {{tanφr ≥ tan(π/M)}
∪{tanφr ≤ − tan(π/M)}}

Fig. 8. M-ary PSK signal space with a single co-channel interferer and AWGN

Further, we note that the distribution of the received phase φr
is symmetric around φr = 0 by virtue of the fact that all the
interference phases are independent and uniformly distributed,
the same being true for the phase of the noise vector. Hence
it is sufficient to simulate events from only (the upper) half of
the error region described above. This in turn can be described
by considering the intersection of the complete error region and
the set {sinφr ≥ 0}.

Consequently, an effective method of biasing is to gener-
ate all interference phases φi such that vectors are most likely
to be aligned along the line marked O in Figure 8. This is
evident from orthogonality and will produce an increase in
the frequency of occurrence of errors. Hence the biased in-
terfering phases are chosen as Gaussian with their means at
µ ≡ (π/2)+π/M and common variance σφ, optimized through
adaptive simulation. As far as the noise n is concerned, in-
creasing its variance will of course produce more errors. How-
ever this will lead to a more than two-dimensional optimiza-
tion problem. A simple solution is to translate the means of the
quadrature noise variables along the shortest line to the decision
boundary, as is done for the interferers. Denoting the biased
means of the noise components as ci and cq , it follows from
Figure 8 that they should be related as

ci = −cq tan π

M

This results in a two-dimensional biasing problem involving the
parameters ci (or cq) and σφ. The weighting function is

W (φ1, . . . ,φL, ni, nq;σφ, cq) =
(
σφ√
2π

´L
exp

³PL
1 (φi−µ)2
2σ2φ

+
(1+a2)c2q+2cq(ani−nq)

2σ2n

´
,

0 ≤ φi ≤ 2π
0, elsewhere

where a ≡ tan(π/M). The various derivatives can easily be
obtained. Simulations are carried out in a similar manner to the
binary PSK case. Results are shown in Figures 9 and 10 for
8-PSK. The SNR per bit is defined as A2/(2σ2n log2M) and the
SIR as 1/(Lα2 log2M). The symbol error rate performances
for QPSK differ only slightly from those for binary PSK and are
not shown. The same general remarks on error rate performance
can be made as in the case of binary PSK.
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A. Capacity

Based on IS estimates of error rates, we can find the capacity
per hexadiagonal cell for M -ary PSK. To calculate the capacity
per cell as a function of the SNR, SIR and error rate, a few
more parameters need to be defined. We will choose some com-
monly used, realistic parameter values. The required bandwidth
is set to the null-to-null bandwidth. Hence, the bandwidth effi-
ciency η for M -ary PSK is η = 1

2 log2M . In the hexadiagonal
structure, the number of cells in a reuse pattern is denoted by
the reuse factor Kcell. The cell structure only allows for a set
of values given by Kcell = i2 + ij + j2, where i and j are
two non-negative integers [2]. A common method to achieve a
performance better than some specified error rate is to increase
the ratio D/R, where D is defined as the distance between the
centers of two co-channel cells and R as the cell radius. The
D/R ratio is related to the SIR as

SIR =
1

6

µ
D

R

¶γ
(5)

where γ is the path loss exponent. The relation between D/R
and Kcell can be easliy found by using the fact that the perpen-
dicular cell diameter is equal to

√
3R. This results in the rela-

tionD/R =
√
3Kcell. A path loss exponent γ = 4 is commonly

used. Substituting these relations in (5) yields SIR = 3
2K

2
cell.

Finally, the capacity per cell is defined as the ratio C = η/Kcell.
Substitution yields

C =
1
2 log2Mq

2
3SIR

[bits / s / Hz / cell] (6)

To compareM -ary PSK modulation schemes, it is assumed that
all symbols are equally likely and use Gray encoding. Hence,
errors that occur over more than one signal point are negligible
compared to errors that occur over a single signal point. Also,
the symbol error rate is well approximated by the bit error rate.

The following procedure is used to find the capacity per
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Fig. 11. Capacity per cell as a function of the required bit error rate for
BPSK. Markers indicate the transitions of Kcell. Kcell values are in parenthesis.
Parameter is SNR.

cell as a function of the BER. For a specified SNR and BER,
the lowest SIR is found that satisfies the BER condition. The
capacity per cell then follows from (6). Since Kcell only takes
non-negative integer values, the capacity per cell takes discrete
values. The results are shown for BPSK, QPSK and 8-PSK
in Figures 11-13. The capacity per cell is presented in two
ways. First, as a continuous function of the BER, ignoring the
fact that Kcell only takes non-negative integer values. Second,
as a discrete function of the BER, taking into account that
Kcell ∈ {1, 3, 4, 7, . . .}. For clarity, the latter is only shown for
SNR = 16 dB. Markers are placed on the continuous capacity
graphs to indicate the transitions of Kcell. Reuse factors are
indicated at the discrete capacity values, between parenthesis.

For most combinations of BER and SNR, QPSK provides the
maximum capacity per cell. This is illustrated more explicitly
for SNR = 16 dB in Figure 14. Comparing the discrete capacity
values at SNR = 16 dB, we conclude that QPSK provides the
highest capacity per cell for 10−12 ≤ BER ≤ 2 · 10−4. QPSK
is outperformed by 8-PSK in a small region 2 · 10−4 ≤ BER ≤
10−3. For higher SNR, the region in which 8-PSK outperforms
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QPSK extends towards lower BER. The opposite occurs for
lower SNR. Furthermore, BPSK is outperformed by QPSK for
any combination of BER and SNR.

V. Conclusion

In this paper we have demonstrated how adaptive importance
sampling methods can be used to solve performance estimation
problems that are analytically intractable. Such tasks would
be computationally very intensive if one were to resort to con-
ventional Monte Carlo simulations. Although numerical results
were displayed only forM -ary PSK, results for other signal sets
can easily be obtained. In particular, it has been shown that the
assumption of a Gaussian model in an interference dominated
situation is not justified for the purpose of evaluating error
rates. Further, the techniques developed here can be applied
to different modulation schemes as also to channels character-
ized by fading and multipath. The performance results are used
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to calculate the cellular capacity of wireless systems by incor-
porating propagation models and bandwidth considerations. It
was found that QPSK outperforms BPSK and 8-PSK for most
BER and noise levels. These results can be related to the work
in [6]. Therein an interference dominated channel model was
considered and Gaussian noise assumed absent. The analysis
in [6] was based on a density approximation derived in [7]
to estimate the error rates of various modulation schemes. By
including Gaussian noise in the channel model, more realistic
performance analysis and capacity results have been obtained.
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