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Abstract

Mobile robots can employ di�erent sensors to col-

lect data about the environment. We propose to use a

special sensor (a catadioptric camera) which provides

panoramic views at each robot position. To model the
environment for later navigation and localisation, we

build a representation of the appearance by compress-

ing the set of panoramic images by Principal Compo-

nent Analysis (PCA). Since the batch application of

the PCA is inappropriate in this case, we propose to
apply an incremental approach. This leads to novel

aspects regarding the adaptation of compressed partial

representation. We provide empirical results which

indicate the performance of the proposed method is

comparable to the performance of the batch method in
terms of compression, computational cost, and, most

importantly, precision of localisation.

I. Introduction

Making a mobile robot move through the environ-
ment autonomously is a task of combining the read-
ings of the input sensors into a model of the environ-
ment. This model is then a kind of a map used for
a robot to �nd its current position (the problem of
localisation) and direct further navigation.
Mobile robots are equipped with various sensors.

Usually, these include low resolution range scanners
in the form of sonar scanners, IR or laser beams.
They measure the approximate distance from the sen-
sor to the nearest obstacle in the sensor's direction.
In order to use them for reliable models, we often
have to calibrate them, and the building of the model
requires probabilistic computation [1].
If we mount a camera on an autonomous mobile

robot, we can make a sequence of images representing
the appearance of the environment from the robot's
point of view. So far, in the task of navigation and
localisation the visual information has been used pri-
marily as a basis for extracting some higher{level in-
formation. Usually, image features are extracted and
then 3D information is estimated. Such methods con-
centrate only on a subset of information contained by
the images, discarding the majority of other informa-
tion. Furthermore, due to noisy input, the estima-
tions can often be spurious, requiring the methods to
detect outliers.
An alternative approach is to use whole images. In

Fig. 1. MagellanPro mobile robot.

order to do that, we have to store a large quantity of
images, and be able to compare them eÆciently with
each new image. We assume that the images taken at
locations close together are more similar than those
taken at locations farther apart. We can then place
the robot at some unknown location, and compare
the image taken instantly with those already in the
model. The images that are the most similar to the
new image indicate the current location of the robot.
We thus perform the learning and localisation visu-

ally.

A method that would be suitable would have to lets
us store a large set of images in a compressed form,
and then retrieve them or recognise similar images.
Appearance{based learning and recognition methods
in computer vision have already been used in applica-
tions such as automated face recognition [13], scene
recognition, pose estimation and object recognition
[5], [11], [12].

Principal Component Analysis (PCA) [2], also
known as Karhunen-Lo�eve Transform, is a method
often used for image set compression, reconstruction
and recognition. For a set of input images, PCA cre-
ates a low{dimensional space in which each image is
represented by a point. If two images have a high level
of correlation, then the corresponding points lie closer
in the subspace. Correlation is a similarity measure
that is often used for comparing images [6]. Using
PCA, we transform the similarity measure into a dis-
tance between two points in a high dimensional space.

PCA thus complies well as a method for learning
the environment and for localisation through recog-
nition. However, PCA requires all input images to be



known each time we compute the transform. Due to
the spacial demands and computational complexity,
the computation of the transform becomes forbidding
as the number of input images increases.

Fortunately, it is possible to merge two results of
PCA into one that is equivalent to the one obtained
using all the input data from the two subsets at the
same time [4]. It is also possible to update the re-
sult with a newly acquired image without having to
recompute the entire transform [3], [7], [8].

So far, the incremental methods for computing
PCA have been used to overcome the problems with a
large set of input data. The data was used for build-
ing the set of eigenvectors, and once this was built,
the input images were projected. The set of the input
images had to be retained throughout the operation.

Having to store all training images cancels out the
e�ect of image set compression. Considering the task
at hand, the mobile robot doing the computation us-
ing an on{board computer, we might reach the stor-
age limits. By maintaining a low{dimensional space
with representations of each training image, we are
already keeping an approximation of the training set.
Therefore, keeping the original input images can be
considered as redundant.

In this paper we study how to incrementally com-
pute the PCA of a set of input images by storing only
the image transforms in the high dimensional space.
We analyse the e�ects of updating the representation
of the image set, and apply the methods to the visual
learning and localisation of a mobile robot.

In Section II, we briey introduce the PCA. Then
we present the incremental PCA. In the last part
of this section we explain our contribution and the
novel approach to the computation of the training
set model. In Section III we present the experiments
and their results. Section IV gives conclusions.

II. Method

A. Principal Component Analysis

PCA [2] is a method that takes as input a set of
data vectors, then builds a low{dimensional space
spanned by a set of orthogonal vectors, and repre-
sents the data vectors as points in this new space.
In order to use images as the input data, we need
to store each w � h image into a vector with w � h

elements.

We denote the input data vectors as ~xi, i = 1::N ,
N being the number of input vectors. We compute
the mean of input vectors as ~mx =

1
N

PN

i=1 ~xi .

The covariance matrix C of the input data is then
computed as

C =
1

N

NX
i=1

(~xi � ~mx)(~xi � ~mx)
> . (1)

We use the covariance matrix to set up an eigen-
problem

C U = U � , (2)

obtaining a matrix U with eigenvectors for columns,
and a diagonal matrix of eigenvalues �.
Eigenvectors form a basis for a high dimensional

space into which we project the input images. If we
take a data vector ~y, we can project it as follows:

~w = U>(~y � ~mx) . (3)

Vector ~w holds the coeÆcients which then allow for
the reconstruction of the image:

~y 0 = U~w + ~mx =

NX
j=1

wj~uj + ~mx , (4)

where ~uj is column j of matrix U.
The reconstruction of the images is simply a linear

combination of the principal components of the image
set. However, if the eigenvectors can not fully repre-
sent the image, the reconstruction ~y 0 di�ers from the
original input vector ~y by some residual vector ~h:

~h = ~y 0
� ~y . (5)

Vector ~h is perpendicular to all eigenvectors in U.
The property of PCA is that the eigenvectors with

higher eigenvalues store a higher level of information
(eigenvalues indicate the level of variance in the di-
rection of the corresponding eigenvector). Therefore,
we can discard columns of U that correspond to the
lowest eigenvalues, dropping only a low amount of
information, while at the same time gaining on the
level of compression.
For computation of PCA, we need to use all the

input data at once. Hence, this method has also been
named batch method.

B. Incremental PCA

The expression (2) features matrices that increase
with the number of input images. The computation
of the solution of the eigenproblem becomes compu-
tationally too expensive. Fortunately it is possible to
update the eigenvectors ~uj , j = 1::p, eigenvalues ~�
and mean value ~mx by an additional new data vector
without having to recompute the entire set.
Here we summarise the method described in [3].

First, we update the mean:

~m0

x =
1

N + 1
(N ~mx + ~y) . (6)

The covariance matrix can be updated as well:

C
0 =

N

N + 1
C+

N

(N + 1)2
(~y � ~mx)(~y � ~mx)

>. (7)



We update the set of eigenvectors by adding a new
vector and rotating them. Since the residual vector
(5) is orthogonal to all eigenvectors, its normalised
equivalent is suitable for the additional vector:

~hn =
~h

jj~hjj2
. (8)

If the residual vector equals zero (i.e. when the eigen-

vectors fully represent vector ~y) we set ~hn = ~0. We
obtain the new matrix of eigenvectors U0 as

U
0 =

h
U ~hn

i
R , (9)

where R is a (p+ 1)� (p+ 1) rotation matrix. R is
a result of the eigenproblem of the following form:

D R = R �0 . (10)

According to [3], to compose D, we start with (7)
and (9), and using the form of (2) we get

D =
N

N + 1

�
� ~0
~0> 0

�
+

N

(N + 1)2

�
~w ~w>  ~w

 ~w> 2

�
,

(11)

where  = ~hn(~y � ~mx).
There are other ways to construct D. However,

only the one described in [3] allows the change of
mean. Other authors [7], [8] do not maintain the
mean at all (i.e. the mean vector is always assumed
to be zero). We decided to follow the method that
allows for the updating of the mean, because (also
according to [3]) not doing so contributes to worse
classi�cation and bigger residuals.
The new matrixU0 contains p+1 eigenvectors. We

can then decide to reduce the number of eigenvectors
back to p. A criterion for doing so can be one of the
standard criteria which include either keeping only
a stipulated number of eigenvectors (e.g. a fraction
of the number of the input images), discarding the
eigenvector with the least eigenvalue unless it exceeds
a stipulated fraction of the eigenspectrum energy, or
keeping the eigenvectors with eigenvalues that exceed
an absolute threshold.

C. Our contribution

We have focused on di�erent ways of employing
the representation of the visually learnt environment
without having to keep the original images. In the
process of learning, we would like to update our
knowledge base with each new image, and also update
all the representations of the previous observations
to become compatible with the updated eigenvector
model.
Assume we have at some point received n data vec-

tors ~xi, i = 1::n. We have already used them to build
a representation as a space spanned by p eigenvectors

a) b)

Fig. 2. a) A sample of images from the sequence taken with
the mobile robot in a laboratory. The images have been trans-
formed into the cylindrical form. b) First three principle com-
ponents (eigenvectors).

~uj , j = 1::p. Apart from the mean, the eigenvectors
and corresponding eigenvalues, we keep the represen-
tations of each ~xi in the form of a coeÆcient vector
~wi(n). As we update the coeÆcient vectors each time
a new observation is taken into account, the value of
the coeÆcient vector depends on the time the obser-
vation was taken. Hence the index (n).
When the new observation ~xn+1 arrives, we com-

pute the new mean using (6), we construct (11) (using
~xn+1 in place of ~y) and solve (10).
In order to update the coeÆcients ~wi(n), we �rst

have to reconstruct each image:

~xi(n) = U~wi(n) + ~mx (12)

and project it to the new space of eigenvectors:

~wi(n+1) = (U0)>(~xi(n) � ~m0

x) . (13)

Note that if ~wi(n) has p elements, then ~wi(n+1) has
p+1 elements, which complies with the increase of the
number of the eigenvectors. All the data denoted ear-
lier by ~xi(n) including the new data vector ~xn+1 are
fully represented by the eigenvectors ~u0j . Therefore,
there are no di�erences between ~xi(n) and U

0 ~wi(n+1).
Once all the observations are updated according to

the newly{arrived observation, we can decide whether
to keep the new dimension or discard it. We can make
this decision based on one of the criteria already listed
in the previous subsection. However, since the obser-
vations are kept only as projections of the input data,
the removal of the eigenvectors a�ects these observa-
tions as well.
To follow a life cycle of an observation, let us as-

sume at some point a data vector ~xk has been added
to the eigenvector representation. At �rst, this vec-
tor is fully recoverable from the presentation with
the eigenvectors. If we decide, however, to reduce
the number of eigenvectors, we can only recover the
approximation ~xk(k+1) which di�ers from ~xk by some



non-zero residual. The next time we decide to reduce
the number of eigenvectors after having inserted a
few additional observations, we will be left with ~xk(l),
l > k, which is an approximation of ~xk(k+1), etc.
Therefore, we can think of a few additional cri-

terion for reducing the number of eigenvectors from
p+1 back to p. We can decide on whether the overall
reconstruction error would exceed an absolute thresh-
old when reducing to p. The basic idea behind this
method is to �nd out how much error we make if we
update the eigenvectors and then discard one dimen-
sion. The method can be summarised as follows:
1. Compute ~xi(n), i = 1 : : : n. Let ~xn+1(n) = ~xn+1.
2. Update the eigenvectors for ~xn+1 using the meth-
ods described above. We obtain p+ 1 new eigenvec-
tors.
3. Discard ~u0j with the smallest eigenvalue.
4. Compute ~xi(n+1), i = 1 : : : n+ 1.

5. Compute E =
Pn+1

i=1 jj~xi(n+1) � ~xi(n)jj2.

E is an error measure we can then use for com-
paring to a threshold. If it exceeds the threshold, we
establish that discarding the new dimension would
cause too big a degradation in the approximation of
the previous observations. If this is the case, then we
should keep all p+1 eigenvectors. Otherwise, we can
retain only p eigenvectors. This method gives more
control over the way we handle the observations.

III. Experimental results

With the experiments we tested how well the incre-
mental approach of building the eigenvector represen-
tations compares to the batch method, and what the
e�ects of keeping and updating the observations only
in the form of the coeÆcients are. We also performed
some real localisation tests.
We captured most of the images using a cam-

era mounted on our MagellanPro autonomous mobile
robot (Figure 1). On the top of the camera we placed
a hyperbolic mirror which enabled an ordinary cam-
era to capture panoramic images. The images show
the surroundings of the robot as it is reected in the
mirror. The mirror itself covers only a circular por-
tion of the image. Even though PCA can take the
images in such a form, we transform the hyperbolic
images into cylindrical images. This transformation
is carried out by mapping image pixels in polar co-
ordinates into Cartesian coordinates (Figure 2a). We
thus obtained a cylindrical image.
As the robot moves, it internally keeps track of its

position in space and orientation. The coordinates of
the so{called odometry were reliable enough to assign
them to each image. We could also align each image
in a way that they appeared to have been all taken by
a robot facing in the same direction. We performed
this by shifting the columns of the cylindrical images
to simulate the rotation. With this internal compass
we avoided the problems with arbitrary orientation.
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Fig. 3. Comparison of the reconstruction error for batch
method and incremental method.
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by the number of eigenvectors. The curves made by the batch
method represent the number of eigenvectors containing a cer-
tain percentage of the overall eigenvalue energy. The incre-
mental methods produce a number of eigenvectors we retain.
The values depend on the number of images we add.

A useful measure of performance of the PCA is the
overall reconstruction error. We can obtain it by sum-
ming the norms of the residual vectors of each obser-
vation. Figure 3 shows the comparison between the
overall reconstruction error for batch method and in-
cremental method. The reconstruction error depends
on the number of eigenvectors we discard. For the
batch method, after having computed PCA, we dis-
carded the least signi�cant eigenvectors one by one.
In each iteration, we computed the overall reconstruc-
tion error. For the incremental method, for each
point on the curve a whole run was carried out, only
varying the threshold between the runs.
The results indicate the reconstruction error grows

roughly twice as fast for the incremental method as it
does for the batch method. Hence, if we want to ob-
tain the same accuracy, we have to adjust the thresh-
old parameter so that the number of discarded eigen-
vectors is halved. However, since we need to keep no
additional data vectors, we still consider the perfor-
mance of the incremental method to be good.
Another way of comparing the incremental method

with the batch method is through observing the dis-
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Fig. 5. The growth of the number of eigenvectors as the new
training images are being added. Chronological, reverse and
four di�erent random data orders were used. 950 images were
added altogether.

tribution of eigenspectrum energy. If we use a batch
method, we often decide to keep a certain number of
eigenvectors such that the accumulation of the corre-
sponding eigenvalues contains a stipulated percentage
of the entire eigenvalue energy. By running the incre-
mental method, we can observe how the number of
preserved eigenvectors changes according to criteria
as we add new data vectors.
Figure 4 shows two superimposed charts, one for

the batch method and the other one for the incre-
mental method. The same data has been used for
both methods. In the case of the incremental method,
two runs were carried out, changing only the thresh-
old parameter. We can see that the results compare
well: in the case of a lower threshold parameter value
used, the growth of the number of eigenvectors was
very similar to the growth of the same value for batch
method where 90% of the energy was retained. In the
second run of the incremental method we raised the
threshold, and the curve becomes comparable to the
one for batch method with 70% of eigenvalue energy
retained.
We then experimented how the order in which we

add the images a�ects the growth of the number of
the eigenvectors.
We �rst used the same set of images and the

same thresholds as in the previous experiment. The
chronological (from �rst to last) order and reverse or-
der were used. The results are shown on the Figure
5. The curves show di�erent dynamics, but �nally
they reach the same value. The �gure also shows the
behaviour of the incremental methods by adding a
random order of updating the eigenvectors. This or-
der is not very life{like, but it shows some interesting
results, nonetheless. We can see that in the end, with
the random order, we end up with less eigenvectors
than with the sequential order. This type of order
thus forces the space of eigenvectors to become more
descriptive in the earlier stage due to the diversity of
the data.
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Keeping data only as projections into the space of
eigenvectors, we make changes to their presentation
each time we modify the eigenvectors. During the
course of experiments, we can observe the di�erence
between the original data and the current represen-
tation. These di�erences are expressed in the form
of the overall reconstruction error. We can obtain it
by summing the norms of the residual vectors of each
observation.
In practice, when we explore the environment and

learn the model, we can come across the same obser-
vation multiple times. Therefore, we experimented
the e�ect of revising the observations. We took a se-
quence of 150 images and used it three times in a row
as the input of our method. Again, we observed the
reconstruction error of individual observations.
Figure 6 shows the results for two images in the se-

quence. We can see that, after we start with the same
sequence (image 151 in the sequence is the same as
image 1, image 152 equals image 2 etc.), the represen-
tation of the one already in the model improves. At
the end of the second sequence we notice the recon-
struction errors are lower than they were at the end
of the �rst sequence. We take similar observations
during the third repeated sequence.
Hence, we can safely replace the old observations

with the newly acquired equivalents. With a higher
level of repetition, we can anticipate a better model
of the environment.
A true test of the algorithm is when solving a task

of localisation. Figure 7 shows a result of such ex-
periment. The circles on the �gure denote the loca-
tions in real{world coordinates where each image was
taken (Figure 2a). We used a sparse, equally spaced
grid of 62 locations for a set of training images. The
squares in the grid had 60 � 60 cm. We then made
another collection of 100 images taken at locations
surrounded by at least four neighbouring locations
previously used for training. We ran the incremen-
tal PCA algorithm which produced a space with 16
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eigenvectors (Figure 2b), which is 26% of the number
of training images. Test images were then projected
into this space, and they were matched with the clos-
est training coeÆcient vector.
The algorithm gave excellent performance on our

test images. As we can see from the Figure 7, it
indicated one of the four neighbouring locations for
each test image, scoring a 100% recognition rate.

IV. Conclusion

We investigated the incremental method of Princi-
pal Component Analysis and applied it to building a
view{based representation for mobile robot. We ex-
ploited its capabilities of storing the input data with-
out having to use much preprocessing which would
reduce or alter the information contained by the data.
We proposed a method which requires less data

storage. During the training, it uses each input im-
age in its full form only once. Once we updated the
model and the previous observations using the new
observation, we only kept its reduced equivalent.
We came to a conclusion that our method com-

pares well with the batch method in terms of the
information storage capabilities. Because all data is
not present during the computation, our method re-
quires a larger number of eigenvectors for the same
level of approximation. From the computation point
of view, when we deal with a large set of data, the
proposed method becomes increasingly more eÆcient
than the batch method. Considering we also need
less storage, the gain is larger than the cost.
Additional experiments indicated the method per-

forms well when applied to some task. Speci�cally,
the localisation through recognition of the images
gave promising results even when the level of com-
pression was high. We are encouraged to use the
methods to further investigate the possibilities of nav-
igation using visual information. The method can be

exploited for other tasks involving appearance recog-
nition as well.
Further research includes using the proposed

method for robust recognition and localisation where
occlusion has been introduced to the test images.
PCA has already been used for robust recognition
and pose determination [9] and for robust localisa-
tion [5].
We will also consider the possibilities of incremen-

tally building multiple low{dimensional model repre-
sentations in place of one higher{dimensional model.
We expect, as a result, each type of environment
(e.g. corridor, laboratory) will have its own model
which would better represent each type of environ-
ment than a more general model [10].
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