

Utilization of Additive Manufacturing in Nuclear Power Industry

FNSPE at CTU & COMTES FHT a.s.

Štěpán Jedlan, Martin Ševeček, Antonín Prantl, Josef Hodek, Pavel Podaný & Michal Brázda

R8 LMAG meeting Prague, Czech Republic 27th of October, 2022

Outline

- 1. The aim of the project
- 2. Direct Energy Deposition
- 3. Application of AM in Nuclear Power Industry
- 4. Experiment
- 5. Results

6. Future plans

The aim of the project

- Research on additive manufacturing (AM) methods with emphasis on Direct Energy Deposition method (DED)
- Use of additive manufacturing (AM) methods in Nuclear Power Industry
- Printing samples via DED and obtaining material properties
- Propose optimal manufacturing parametres based on the obtained data

Method	Technology	Material	
Direct Energy Deposition	Laser Direct Energy Deposition	- Metals	
	Electron Beam Direct Energy Deposition		
Powder Bed Fusion	Selective Laser Sintering		
	Selective Laser Melting	Metals	
	Electron beam Melting	Ceramics	
Vat Photopolymerization	Stereolithography	Photopolymers	
	Digital Light Processing	Ceramics	
Sheet Lamination	Laminated Object	Metals	
	Ultrasonic Consolidation	Ceramics Plastic sheet	
Material Extrusion	Fused Deposition Modeling	Polymers	
Material Jetting	Polyjet	Polymers Photopolymers Wax	
	Multi-Jet Modeling		
Binder Jetting	3D printing	Metals	
	Voxeljet	Polymers	
	Exone	Ceramics	

Direct Energy Deposition (DED)

- Faster but less precise manufacturing process
- Graduated manufacturing
 - Availability to print from multiple materials or to do gradient transitions
- Multi-axis printing (up to 5 axis)
- Cladding, defect repairing
- Printing via laser or an electron beam
 - Inert or shielding gas (laser) powder and wire F based
 - □ Vacuum (electron beam) wire based

Printing strategy: a) Zig, b) ZigZag, c) Chessboard, d) Spiral

AM in nuclear power industry

 No standards qualifying use of AM in nuclear power industry

 Huge affection of deposition parametres on material properties

- Framatome –10x spacer via PBF for BWR reactors
- Framatome, ORNL, TVA 4x channel fastener via PBF from SS316L
- Westinghouse StrongHold AM filter (debris filter)
- Framatome printed Uranium alloys

Channel fastener – production process

StrongHold filter

StrongHold AM filter

PWR bottom nozzle for debris capture

TRITON 11 fuel filters

Structural Member

Material and Methods

- 8x cube shaped samples were printed via DED (20x20x20 mm)
 - □ Samples printed from 08CH18N10T (powder particles size 45-120 µm)
- Samples divided into 2 groups based on the deposition module (optics)
 - **Δ** 4x SDM 2400 (diameter of laser beam 2400 µm)
 - **Δ** 4x SDM 1600 (diameter of laser beam 1600 µm)
- Repair of simulated defect on a cube shaped sample (80x80x80 mm)
 - Cube was made via conventional methods (forged) from 08CH18N10T
 - Repair done via DED from 08CH18N10T

Štěpán Jedlan, 10/27/2022 Page 10

Experiment

- Samples cut in different planes
- Mounted, abraded, etched
- LOM screens
- Vickers microhardness (HV1)
- Metallography

Results – hardness of deposited samples

- HV5 was measured to be 175 ± 4.9 at RT for non-deposited 08CH18N10T
- HV0.5 was measured to be 165 on machined specimens (at 260 °C)
- HV0.3 of AISI 321 is 175.17 at RT (equivalent to 08CH18N10T according to ASTM/ASME)

Vickers hardness (HV1 load) at RT								
Sample	1_4_ZigZag YZ	2_4_ZigZag XZ	3_4_Spiral YZ	4_4_Spiral XZ	1_6_ZigZag YZ	2_6_ZigZag XZ	3_6_Spiral YZ	4_6_Spiral XZ
Average	179.04	178.48	172.75	173.71	180.83	189.91	176.19	175.32
Standard deviation	7.73	4.99	7.99	6.06	9.74	8.83	10.49	9.01

Results – hardness of repaired defect

- HV5 was measured to be 175 \pm 4.9 at RT for nondeposited 08CH18N10T
- HV0.5 was measured to be 165 on machined specimens (at 260 °C)
- HV0.3 of AISI 321 is 175.17 at RT (equivalent to 08CH18N10T according to ASTM/ASME)

Vickers hardness (HV1 load) at RT				
Sample	1_YZ	1_XZ	2_YZ	2_XZ
Average	210,47	213	210	215,33
Standard deviation	9,74	9,67	9,17	8,11

Results – metallography

- Columnar and small equiaxed grains
 - From the outside of the meltpool into its center
- Smaller grains when SDM 1600 is used
- Different meltpool sizes due to the DMT
- Pores and cracks are observed on the transition area of meltpools

3_6_Spiral

4_6_Spiral

Results – porosity

Sample	Porosity [%]
1_6_ZigZag	0,066
2_6_ZigZag	0,081
3_6_Spiral	0,111
4_6_Spiral	0,067
1_4_ZigZag	0,1
2_4_ZigZag	0,024
3_4_Spiral	1,418
4_4_Spiral	2,483

Sample	Porosity [%]	
1_YZ.jpg	0,061	
1_XZ.jpg	0,044	
2_XZ.jpg	0,141	
2_YZ.jpg	0,028	
Repair of defect		

Deposited samples

Conclusions

- Material properties are in good agreement with non-deposited material
- Based on the obtained data, the combination of SDM 1600 and ZigZag strategy results in:
 - The lowest porosity
 - **The highest hardness**
 - Lower grain size

Štěpán Jedlan, 10/27/2022 Page 19

Future plans

- Advanced material testing
- Comparison between Powder Bed Fusion and Direct Energy Deposition printed samples
- FEM model
- Printing a component for nuclear powerplant
- Qualify pathways for specific printing method and material, which would result in establishing a standards

Acknowledgment

Special thanks to my colleagues: Martin Ševeček, Antonín Prantl, Josef Hodek, Michal Brázda, Pavel Podaný and the staff of the COMTES fht a.s.

References

- 1. JANOVEC, Martin. Užitné vlastnosti výrobků připravených pomocí technologie 3D tisku. Zlín, 2019. Diplomová práce. Univerzita Tomáše Bati ve Zlíne, fakulta technologická, ústav fyziky a materiálového inženýrství. Vedoucí práce Ing. Petr Smolka, Ph.D.
- 2. BRÁZDA, Michal. Vliv parametrů depozice na výsledné vlastnosti kovových komponent vytvořených pomocí metody přímé laserové depozice. Plzeň, 2020. Diplomová práce. Západočeská univerzita v Plzni, Fakultra strojní, katedra materiálů a strojírenské metalurgie. Vedoucí práce Prof. Ing. Jan DŽUGAN Ph. D.
- 3. ZHANG, Yi, Linmin WU, Xingye GUO, et al. Additive Manufacturing of Metallic Materials: A Review. *Journal of Materials Engineering and Performance* [online]. January 2018, 1-6. Available from: doi:https://doi.org/10.1007/s11665-017-2747-y
- 4. BARDEL, D., G. BADINIER, D. MAGNE, et al. Additive manufacturing for fuel components: an overview of key achievements at Framatome. 2021.
- 5. BERGMANN, Uffe, Pascal JOURDAIN & Fredrik WALDEMARSSON. Debris capture performance of StrongHold filter for Westinghouse BWR fuel [online]. TopFuel 2021, 2021
- 6. STEPNIK, B., E. LIBOUTET, C. VERDY & S. COSTIL. Framatome's uranium fuel component 3D printing initiative [online]. RRFM, 2021, 27. 9. 2021, 1-20. Available from: https://az659834.vo.msecnd.net/eventsairwesteuprod/production-ens-public/178d2a654e2c45828e3e504d219d0833
- 7. RIBEIRO, Kandice S.B., Fábio E. MARIANI & Reginaldo T. COELHO. A Study of Different Deposition Strategies in Direct Energy Deposition (DED) Processes. Procedia Manufacturing [online]. 2020, 48, 663-670. ISSN 23519789. Available from: doi:10.1016/j.promfg.2020.05.158
- 8. SIMPSON, Joseph, James HALEY, Corson CRAMER, et al. Considerations for Application of Additive Manufacturing to Nuclear Reactor Core Components [online]. Oak Ridge: Oak Ridge National Laboratory, 31. 5. 2019, 1-4. Available from: doi:https://doi.org/10.2172/1564201
- 9. GIBSON, Ian, David ROSEN & Brent STUCKER. Additive Manufacturing Technologies: 3D printing, Rapid prototyping, and Direct Digital Manufacturing. 2nd edition. New York: Springer Nature, 2014. ISBN 1493921126.
- 10. Additive Manufacturing, Design, Functionally Graded Additive Manufacturing [online]. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2021. ISBN 978-0-8031-7147-3. Available from : doi:10.1520/ISO/ASTMTR52912-EB
- 11. ASTM ISO/ASTM52922-19E1. Guide for Additive Manufacturing Design Directed Energy Deposition. 19e1. West Conshohocken, Pennsylvania, United States: ASTM, 2019, Available from: doi: 10.1520/F3413-19E01
- 12. CLEARY, William, Nathan HANSEN a Uffe BEGMANN. The Development and use of Additive Manufacturing Processes and Design Freedom to Enable and Enhance Advanced Nuclear Fuel Debris Filters, Nozzles, and Assembly Components [online]. Westinghouse Electric Company, 1-4

