

Validation of real-time simulation model of a three-phase Active-Front-End (AFE) rectifier

Presented by:

MD Moshiur Rahman Chowdhury Budapest University of Technology and Economics Faculty of Electrical Engineering and Informatics Department of Automation and Applied Informatics

ieee.org

Outline

Introduction & Overview
AFE Models
Code Generation
Simulation Result
Conclusion & Future work

The research reported in this paper is part of project no. BME-NVA-02, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021 funding scheme.

Introduction

- In recent years, the demand for the efficient power converters has increased rapidly.
- So, both the converter topology and its control becomes more complex to enhance the quality of power conversion.
- **Testing these power converters is a difficult task.**
- Conventual tests are very dangerous and time-consuming.
- Hardware-In-The-Loop (HIL) simulation is the desired solution.

Why HIL Simulation

Industry is constantly developing products

Those products require designing & testing

Modeling and Simulation lower development cost and improve the performance

Possible to inject different failure condition & uncertainties.

Real-Time Simulation Models Active-Front end (AFE) rectifier

- An active front end (AFE) drive replaces the diodes in the rectifier with IGBTs, which significantly reduce harmonics and allow regenerated power to be fed back to the supply.
- □ IGBTs are devices whose switching is controlled electronically hence the term "active" front end.
- The active front end monitors the input current waveform and shapes it to be sinusoidal, reducing total harmonic distortion (THD) to 5 percent or less.

Fig. Three-phase Active Front-End (AFE) rectifier.

Switching logic of the half bridge arm

Simulink model of rectifier bridge with choke

Design Parameters

Main parameters used for the AFE model

Name	Value 325 V 50 Hz 1 mH		
Grid peak phase voltage V_g			
Grid frequency f_g			
Choke inductance L			
Switching frequency f_{sw}	10 kHz		
DC bus voltage U_{dc}	700 V		

Code Generation for FPGA

Simulink model of the grid, the choke and the rectifier bridge used in the HDL code generation for the FPGA

Current Control Model

Current control Simulink model used in C code generation for the DSP

The HIL hardware with Digilent Zybo board

Terminal Program Interface

Programming software tool for DSP

Terminal Program Interface

HiTERM - Developper mode 🛛 🕹				🙀 HiTERM - Service mode 🛛 🕹 👋					
	Setup Monitor Tool About			Setur Teel About					
	T1/T2/T3/T4/T5/T6/T7/T8/T9/T10/ T1)T2/T3/T4/T5/T6/T7/T8/T9/T10/								
	\DSP (0)/			Write/Read/		Write Read	\Write\Read/		
	Name	Value		Name Value		FPGA (0)		\FPGA (0)	
	cnt_1ms	39233	Status	15		l			
	cnt_100ms	37092	Encoder	0	Name	Value	Name	Value	
	cnt_1s	3709	CPLDIn.FAIL	0	CntLimit	100	Cnt	30	
	f	50.0000000	CPLDOut.GPOUT0	0	SlowOut	0	SW	0v1	
	D	0.5000000	CPLDIn.ENC1SW	0	Siowoux			0.1	
	delay	0			Status	15	Slowin	Ux1	
	Status	15			Fail	0	Udc	700	
	AnalogChA.value[0]	701.3431000			Encoder	0	la	15,58154	
	Iref[0]	30.0000000				0		15 20200	
	Iref[1]	0.0000000			LEDS	U	ID	15.73736	
	SVM	1			Ampl	0	lc	-31.39697	
	Крі	2.5000000			Freq	50	Uga	155.4219	
	Kii	0.0700000	-		ACHAI	0		170.0125	
	Idq.re	28.9418800			ALHAT	U		170.8125	
	RED	160			Udc	700	Ugc	-326.2656	
	FED	160			Uq	325			
	ate_2018b_DSP_P.18PER	4000	-		1 -				
	are_2018b_DSP_P.18PER2	7999			Communication timeout. Try	ing to resend message to the	slave device1	^	
	Reading 0th tab and max,min values (non-user related) from DSP-00K				Communication timeout. Trying to resend message to the slave device1				
	Loading Coff file C:\work\Demolab\w	vork\codegen\afe_201	18b_DSP.out for DSP-0OK	~					
	COM5 9 C:\wo	rk\Demolab\work\cc	C:\work\Demolab\work\co	odegen\afe_2018b_DSP.out	COM4 0				
			(a)			(b)			

Interface for DSP side (a) and FPGA side (b)

Simulation Result

Current from DSP side (a) and FPGA side (b) with deadtime 2µsec whereas d reference current steps from 10A to 40A

Simulation Result Cont.

Three-phase current time function where the d direction reference current is 30A with deadtime 0 µsec from the 4-channel scope (a), from the FPGA side (b)

Simulation Result Cont.

Three-phase current time function where the d direction reference current is 30A with deadtime 2 µsec from the 4-channel scope (a), from the FPGA side (b)

Conclusion & Future work

- The HIL simulation framework has been developed for real-time testing of the AFE rectifier control algorithms
- **The system exhibited realistic behaviors**
- The control model can be extended
- A non-ideal grid model with a grid impedance and harmonics to create more realistic behaviors in the HIL system.

