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Abstract—Coarse-graining (CG) improves computational fea-
sibility of simulating complex molecular systems (e.g. proteins,
or polymer chains) by reducing the number of degrees of
freedom considered. Here, we collect many particles making up
a composite body to a single centre of mass and orientation.
Defining the CG interaction potential between the bodies that
minimizes loss of information is non-trivial with no clear an-
alytical solution. We use neural ordinary differential equations
(ODE) to learn such CG potentials in a data-driven manner. We
show a proof-of-concept application on a toy problem and outline
the next steps towards an automated CG software pipeline.

Index Terms—deep learning, neural ordinary differential equa-
tions, molecular dynamics, coarse-graining, rigid body dynamics

I. INTRODUCTION

Molecular dynamics (MD) experiments attempt to under-
stand macroscopic material properties by running computer
simulations according to microscopic physical laws. To find
a thermodynamic average of a property, interatomic potential
energy functions have been empirically fine-tuned to describe
the particles’ interactions.

Machine learning (ML) potentials, specifically neural net-
work (NN) potentials, provide a data-driven approach to
defining these energy landscapes. NNs interpolate the potential
from datasets without the need for any manual fine-tuning.
Since their first use with Behler-Parinello NNs in 2007 [1],
success has been shown with the popular graph NN archi-
tecture called SchNet [2], or the more recent state-of-the-art
approaches of Allegro [3] and NequIP [4].

As the feasibility to simulate molecular systems depends
on the system’s size and complexity, coarse-graining (CG)
of the system’s coordinates is an effective way of reducing
the dimensionality of the problem and thus its computational
demand. As one reduces the representation, a new CG po-
tential must be defined as a function of the coarser set of
variables. For instance, a protein backbone or DNA could
be modelled as a chain of beads, rather than on the atom-
istic resolution. Systems such as DNA nanostars [5], carbon
nanotubes [6], or colloidal systems [7] (shown in Fig. 1) all
exhibit a vast amount of degrees of freedom (df), limiting the
computationally feasible system sizes. Deep learning efforts
such as CGNets [8], VAMPnets [9], or autoencoders [10] show
promising approximations of effective CG potentials.

Learning an ML potential usually involves an energy- or a
force-matching procedure, where frozen time snapshots of the
system are sampled and configuration-energy (or -force) pairs
are used for supervised training of the network. It has been
suggested that training on forces should yield better results
when predicting time-dependent, dynamic behaviour [11].

Greener et al. [12] use recurrent neural networks (RNNs)
to train a model that parametrizes a physics-informed CG
force fields of proteins. They show that differentiating MD and
backpropagating gradients through the time-evolved trajectory
leads to an efficient way to update a lot of parameters at
once. Nevertheless, they are limited by the trajectory length
due to GPU memory constraints, as they are required to
store intermediate values during the forward pass. Moreover,
they impose an inductive bias on the functional form of the
potential, having a pair-wise distance, bond angle and torsion
angle components, rather than letting the NN define its own
internal structure for the potential.

We address both of these limitations and use a novel method
of neural ordinary differential equations (ODEs) [13] to MD.
Neural ODEs advance RNNs by reducing the demand for
memory. During the backward pass, they compute gradients
without backpropagating through the ODE solver. That means
the model trains with constant memory cost, allowing us to
integrate long trajectories. So far they have shown success
across a variety of tasks, including Hamiltonian dynamics with
control [14], computational fluid modelling [15], spintronic
experiments [16] and chemical kinetics [17].

Wang et al. [10] were the first ones to use neural ODEs
within the context of MD simulations. They use control theory
to bias dynamics towards a target folded state of a protein,
defined by a set of macroscopic observables (e.g. torsion
angles along the protein chain). Although this method en-
ables learning control protocols that could be implemented
experimentally, the target state may be unphysical, making this
application unpractical for traditional MD simulations, where
one samples physical thermodynamic averages.

This paper describes a general method to learn CG poten-
tials for any rigid body, regardless of its shape and complexity.
The minimum number of df to describe a rigid body is only
six - three for the position of the centre of mass (COM) and
three for the orientation. Thus, by collecting MD trajectories



Fig. 1. Various systems may have their representation coarse-grained to fewer df, hence enabling faster computation times. In the schematics, the red circle
represents the centre of mass and the black arrow the body’s orientation. A carbon nanotube with an active binding site or a nanostar with a complex shape
can both be interpreted as a rigid body with a centre of mass position and orientation only. Thus, for a system of N bodies, one only needs 6N df, compared
to simulating the composite bodies at their atomistic resolution. The interaction between such bodies is then given by a new coarse-grained potential VCG

with no trivial analytical form. A different example of coarse-graining is a colloidal dispersion of larger particles surrounded by smaller particles, where the
larger particles indirectly interact due to entropic effects caused by the smaller ones. Rather than simulating all the particles, the aggregate effect of the smaller
particles can be described by VCG. Here, we may even omit the rotation of the large particles if they are symmetrical, hence reducing the df even further.

of any molecule, composite particle, nanoparticle, etc., we are
able to train a numerical approximation of the effective CG
potential without the need to know the exact analytical form.

After describing our approach in Section II, we benchmark
the method on a toy problem of two 7-particle bodies. We
give the results, discuss the limitations and outline further
improvements in Section III. We also consider the prospects
of learning pair-body potentials and how it allows for cheaper
computation when simulating larger systems with more bodies.

II. METHOD

A. Neural Ordinary Differential Equations

Neural ODEs come from the seminal paper by
Chen et al. [13]. They are a continuous limit extension
of RNNs and parametrize an ODE as

dz(t)

dt
= f(z(t), t, θ) (1)

where z is a state variable, f is the neural network
parametrized by θ and t is time.

It is straightforward to propagate a trajectory forward in
time using any ODE solver. However, computing gradients
with respect to θ is not. To overcome this, the adjoint sensi-
tivity method must be used during the backward pass.

The adjoint a(t) = ∂L
dt is an instantaneous analogue of

the chain rule, where L(z(tf ), ẑ(tf )) is the loss between the
predicted and true final state of the trajectory, z(tf ) and ẑ(tf )
respectively. It is governed by

da(t)

dt
= −a(t)⊤

∂f(z(t), t, θ)

∂z
(2)

The gradients used to update θ are then given by

∂L

∂θ
=

∫ t0

tf

a(t)⊤
∂f(z(t), t, θ)

∂θ
dt (3)

For more detailed derivation, see the original paper [13].

B. Rigid Body Dynamics

We use rigid body dynamics governed by the Hamiltonian

H(x,p,q, l) = VCG(x,q) +Ktrans(p) +Krot(l) (4)

where x and p are the positions and momenta of COM,
respectively. q are the quaternions of the rigid bodies, and l are
their angular momenta given in the body-fixed coordinates. We
use quaternions over Euler angles as Euler angles are prone to
geometrical singularities and are computationally less efficient.

Using the derivation from Shivarama et al. [18], the com-
plete set of Hamilton’s equation to evolve body i is

dxi

dt
=

pi

mi
= vi (5)

dpi

dt
= −∂VCG(xi,xj ,qi,qj)

∂xi
= Fij (6)

dqi

dt
=

1

2
G⊤J−1

i li (7)

dli
dt

= −Ωli −
1

2
G

∂VCG(xi,xj ,qi,qj)

∂qi
(8)

where mi is the body’s mass, Ji is the matrix with its principal
moments of inertia, vi is its COM velocity, Fij is the force
acted on it by body j,

G =

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 (9)

and Ω is defined by the time derivative as

Ω = 2GĠ⊤ (10)

Note that both the translational and rotational kinetic compo-
nents of H , i.e. Ktrans and Krot respectively, can be explicitly
evolved by (5) and (7). The NN then models the CG potential
VCG as a function of x and q only, summarized in Fig. 2.

Instead of the Runge-Kutta solver used in the original neural
ODE paper [13], we use the Velocity-Verlet integrator as it



Fig. 2. In a single time step for body i, the momenta are explicitly evolved
according to Hamilton’s equations in a physics-informed fashion. The CG
potential energy net is a function of 11 variables: 3 for the separation vector
∆x, 4 for the quaternion qi and 4 for the quaternion qj . Note that we set
the COM position of i to the origin to further reduce the necessary df for
the NN input. To obtain the ODEs from (7) and (8), we take the gradient of
VCG with respect to xi and qi using PyTorch [19], which conveniently
finds the gradient using the computation graph.

is time-reversible and energy-conserving even with long time
steps - a crucially desired property when simulating in the
microcanonical ensemble. More specifically, to resemble the
ODE solver from LAMMPS [20], we implement the Richardson
iteration. Below we give the algorithm to evolve in time by
∆t. Note that whenever we update a quaternion, it is followed
by a normalisation step as q → q

||q|| .
1) translational and angular momentum at half-step

(‘half-kick’, xi and qi constant)

pi

(
t1/2

)
= pi(t0) +

∆t

2

dpi

dt

∣∣∣
t=t0

(11)

li
(
t1/2

)
= li(t0) +

∆t

2

dli
dt

∣∣∣
t=t0

(12)

2) centre of mass position at full-step
(‘translational drift’, free flight with pi constant)

xi (t1) = xi(t0) +
∆t

mi
pi

(
t1/2

)
(13)

3) Richardson iteration for quaternion leapfrog
(‘rotational drift’, free rotation with li constant)

a) full-step Richardson update

qfull
i (t1) = qi(t0) +

∆t

2
G⊤J−1 li

(
t1/2

)
(14)

b) half-step Richardson update

qhalf
i

(
t1/2

)
= qi(t0) +

∆t

4
G⊤J−1li

(
t1/2

)
(15)

c) re-compute body-fixed li(t1/2) at qhalf
i (t1/2)

from system-fixed l̃i(t1/2) at qi(t0)
d) second half-step Richardson update

qhalf
i (t1) = qhalf

i

(
t1/2

)
+
∆t

4
G⊤J−1li

(
t1/2

)
(16)

Fig. 3. Schematic of the two 7-particle hexagons, comparing the full (top)
and CG representations (bottom). The hexagon consists of a central particle
surrounded by 6 particles at a distance of σLJ from (20). In the atomistic
resolution, all particles’ positions X need to be considered, whereas after
coarse-graining one considers only the CG coordinates.

e) corrected Richardson update

qi(t1) = 2qhalf
i (t1)− qfull

i (t1) (17)

4) translational and angular momentum at full-step
(‘half-kick’, xi and qi constant)

pi (t1) = pi

(
t1/2

)
+

∆t

2

dpi

dt

∣∣∣
t=t1/2

(18)

li (t1) = li
(
t1/2

)
+

∆t

2

dli
dt

∣∣∣
t=t1/2

(19)

C. Toy Problem

Our system consists of two 7-particle hexagons (shown in
Fig. 3), where each particle with unit mass mp acts with a
purely repulsive Lennard-Jones potential given by

VLJ(r) = 4ϵLJ

[(
σLJ

r

)12

−
(
σLJ

r

)6
]

r < rc (20)

where r is the particles’ separation, ϵLJ is the depth of the
potential well (set to 1), σLJ is the distance at which the
potential energy is zero (or equivalently the size of the particle;
set to 1) and rc is the cutoff radius (set to 2

1
6 ).

To sample the phase space of interest, i.e. when the two
bodies are interacting, we add a harmonic restraint between
the COMs given by

Vext(∆x) =
1

2
k(∆x−∆x0)

2 (21)

where ∆x = ||xj−xi||, k is the spring constant (set to 6T/r2c ),
and ∆x0 is the equilibrium distance (set to 2). The parameters
are defined such that there is 3kBT potential energy when
the bodies stop interacting. When training, we add Vext to
the overall potential acting on the bodies, hence the NN only
learns the difference, which is the desired VCG.



D. Training

We use LAMMPS [20] and its RIGID package to sample 10
trajectories of the two hexagons interacting. These trajectories
are split into training, test and validation datasets with the
ratio of 80%-10%-10% respectively. Each trajectory runs for
107 steps, where each time step is 10−5 τunit, but we only
log every 100th step and thus the logged time step in the
datasets is 10−3 τunit. We initialise each trajectory with a
canonical ensemble simulation for 105 τunit with a random
velocity assignment, defined by the temperature (set to 0.5).

The validation dataset is used to find suitable hyperparam-
eters using SigOpt [21]. The net has 68-48-32 neurons and
uses the tanh activation function in the hidden layers. The
output layer is a single linear neuron. We train with Adamax
optimizer with a learning rate of 0.02 and we use a batch size
of 10 000 initial conditions. The loss function is defined as the
mean-squared error (MSE) of the final state as

L(x,p,q, l) =
1

13N

N∑
n

(
(xn − x̂n)

2 + (pn − p̂n)
2 (22)

+ (qn − q̂n)
2 + (ln − l̂n)

2
)

(23)

where we take the mean over all outputs n from a single
batch of N trajectories. The hat symbol refers to the true final
states and the factor of 13 comes from adding together the
dimensions of the four variables, i.e. 3 + 3 + 4 + 3 = 13.

Initially, the training iterations involve propagating trajec-
tories for 20 time steps. This is done in order to learn some
initial dynamics first. We then increase the number of time
steps by 10 every 100 epochs, up until we have trained for
500 epochs in total.

The PyTorch [19] code used in this paper extends the
adjoint method from [10] and is available at [22].

III. RESULTS & DISCUSSION

Fig. 4 shows predicted trajectories using VCG. Note that we
do not plot predicted trajectories from the test dataset, as our
current solution fails to generalize well.

Fig. 5 shows the energy landscape when the hexagons
interact within the xy-plane. We would expect a flat landscape
with an elliptic hill in the middle, nevertheless, our solution
also shows other peaks and is not very smooth. Note, however,
that direct xy-plane interactions area statistically unlikely to
appear in the dataset, hence this is an extrapolation from
interactions at other than direct angles.

Below we discuss the shortcomings of our approach and the
future prospects towards an automated CG pipeline. Note that
the project is currently work in progress and the majority of the
advancements were made in implementing rigid body MD into
neural ODEs. Nevertheless, even though our solution does not
compare with all-particle LAMMPS simulations in terms of the
accuracy or computational efficiency, we produce this paper
as a proof-of-concept of this neural ODE application.

A. Generazibility

Accuracy on the test dataset could be improved by finding
a more suitable set of hyperparameters - primarily the NN
architecture, including activation functions and widths of each
layer. VCG of the toy problem should be relatively easy to
learn, hence one should expect a small net to approximate the
solution well. As always, more training data should provide
more configurations to sample a general VCG, nevertheless,
efforts should be made to minimise the amount of training
data necessary to reduce the initial computation demand of
the all-particle simulation.

The potential energy landscape shows a lot of jagged
regions, suggesting our net either overfits or is insufficiently
small to define a smooth interpolation. L2 regularization,
temporal regularization [23] or both, should be employed to
improve generalizability. Temporal regularization also speeds
up training convergence. One may then also fine-tune the time
step ∆t and trajectory length to manage the trade-off between
efficiency and accuracy.

B. Loss Function Choice

Our simple approach to define the loss function as the MSE
of the final state could be revised. Firstly, as the loss of quater-
nions will always be smaller due to their unit magnitude, one
should normalise each variable by its distribution within the
dataset. Another approach might be normalising the distance
and velocities by the size of the simulation box, or one could
only consider the relative separation and velocities between
the bodies to avoid the effects of the box size completely.

Secondly, a more robust method of evaluating the diver-
gence should be implemented. In some of our experiments,
we tried using the MSE of all states within a predicted
trajectory, which sometimes produced better results, but was
fundamentally insufficient as a metric for measuring diver-
gence, as some models minimised the test error when VCG = 0
for all configurations, i.e. the energy landscape was flat.
This also highlights that a clearer divergence metric, such
as the Lyapunov divergence [24], should be used to evaluate
model accuracy. Furthermore, the accuracy could then also
be assessed on more general simulation metrics, for example
the pair-correlation function, rather than naı̈vely evaluating the
loss function on the test dataset.

Also, note that the choice of the loss function may primarily
depend on the objective of our simulations. If one wants to
primarily predict the system’s energy, then one could define
the loss as a function of energies leading to a more accurate
approximation. Moreover, as the loss can be a function of any
thermodynamic variable, one could experiment with functions
of force or even the pair-correlation function.

C. Optimization

In terms of compute time, both training and prediction times
are fairly high compared to the well-optimized LAMMPS. For
instance, training the model took 16 hours on a single GPU
(NVIDIA Quadro P4000). The major bottleneck compared
to the original neural ODE implementation is the use of



Fig. 4. Predicted trajectory of the two hexagons using the learned VCG. The initial conditions are taken from the training dataset. The dashed lines represent
the true trajectories. The reduced units of distance and time are given by σunit = σLJ and τunit = σLJ ·

√
mp/ϵLJ respectively. We are able to train a

potential that somewhat approximates the collisions between the bodies, although, at longer trajectories, our numerical solution starts accumulating substantial
error. Note that the maximum trajectory length trained on is 100 time steps, whereas here we plot 5 000 time steps, suggesting that one can learn dynamics
on a long time-scale even with many short trajectories.

quaternions. Here note that we have purposely chosen this
trade-off of longer computation in order to avoid memory
overflow. Nevertheless, such memory issues may arise only
with a certain set of molecular systems, hence those will be
the ones taking full advantage of our method. Such systems
will presumably involve more complex bodies in terms of
shape and surface structure. The usefulness of this method will
thus come to test only when simulating more complex systems
such as carbon nanotubes, nanostars, or colloidal dispersions
mentioned above.

D. Further Work

As it is likely that the approximation will always yield to
some numerical error, especially when the error accumulates
for longer trajectories, one may employ Hamiltonian Monte
Carlo (HMC) [25] to correct for the deviation from the ergodic
ensemble. This involves taking a Monte Carlo acceptance step
after several dynamic time steps were taken. The Master’s
thesis that laid the foundations for this paper suggested the use
of neural HMC as an effective way to improve sampling [26].

Moreover, further effort should be given to incorporating our
PyTorch models within LAMMPS. Packages such as ML-IAP
and ML-SNAP do just that, although more work is needed to
integrate CG potentials parameterised by body orientation. A
future outlook is to have a fully automated coarse-grainer with
an adjustable trade-off between accuracy and efficiency, where
lower accuracy would allow for more rapid experimentation.

Finally, in more complex systems, we also need to con-
sider the temperature of the training data, as the effective
intermolecular forces will be temperature-dependent. To elab-
orate, composite particles at different temperatures might have
different variances in their spatial configurations, thus the
effective interaction between the bodies is also different. Our
toy problem was defined in such a way that there were no
thermal fluctuations between the particles within a single
hexagon.

IV. CONCLUSION

This paper showed the proof-of-concept application of
neural ODEs to learning CG potentials. We generated full-
atomistic MD trajectories of composite bodies to train an



Fig. 5. Potential energy landscape of VCG for in-plane interaction, given in
the inset schematic. The inputs to VCG are thus [∆x1,∆x2, 0], [1, 0, 0, 0]
and [1, 0, 0, 0], where we scan over ∆x1 and ∆x2 values, i.e. we scan across
the x and y spatial dimensions, and then the quaternions represent no rotation,
i.e. the hexagons lie flat in the xy-plane. The reduced energy ϵunit equals ϵLJ .

effective CG potential as a function of the minimum df for
a rigid body. We confirmed the feasibility on a toy problem.
Our learned CG potential showed promising results predicting
trajectories from the training dataset, but so far failed to
perform well on the test dataset. Regularization methods
were proposed to generalise our model. Further accuracy and
efficiency improvements have also been suggested in order
to properly compare this method to the more traditional ML
potentials, or to full-atomistic MD simulations themselves.
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[26] J. Lála, “Coarse-graining of molecular dynamics using neural ordinary
differential equations,” Master’s thesis, Imperial College London, 2022.


